Unveiling microbial secondary metabolite biosynthetic gene clusters from alkaline soda Lake Chitu, in the Ethiopian Rift Valley

Graphical abstract

Unveiling microbial secondary metabolite biosynthetic gene clusters from alkaline soda Lake Chitu, in the Ethiopian Rift Valley
PDF
HTML

Keywords

antiSMASH
BAGLE4
KEGG
Biosynthetic gene clusters
Metagenome-assembled genomes
NaPDoS
Secondary metabolites
Soda Lakes
Terpene clusters
Terpene-precursors

How to Cite

1.
Bekele GK, Balcha ES, Meka AF, Assefa EG, Abda EM, Tuji FA, Gemeda MT. Unveiling microbial secondary metabolite biosynthetic gene clusters from alkaline soda Lake Chitu, in the Ethiopian Rift Valley. Electron. J. Biotechnol. [Internet]. 2025 Sep. 15 [cited 2025 Dec. 6];77:48-5. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2479

Abstract

Background: Microorganisms inhabiting alkalihalo-soda lakes are known for producing diverse secondary metabolites with potential biotechnological and pharmaceutical applications. This study explored the biosynthetic capabilities of microbial communities from Ethiopia’s Chitu Lake through shotgun metagenomic sequencing and metagenome-assembled genome (MAG) analyses using various bioinformatics tools.

Results: Analysis of MAGs using the Antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) revealed 13 major types of biosynthetic gene clusters. The most abundant were terpene-precursors (32%) and terpene clusters (25%), followed by ribosomally synthesized and post-translationally modified peptides (9%) and nonribosomal peptide synthetases (7%). Other less common BGCs (5% each) included betalactone, ectoine, and Type I polyketide synthase, while rare types (2% each) comprised arylpolyene, hydrogen cyanide, phosphonate, ranthipeptide, and others. The Natural Product Domain Seeker (NaPDoS) detected ketosynthase domains linked to pharmaceutically important such as various fatty acid synthesis, modular and iterative domain classes, and condensation domain which is associated with L-amino acid coupling (LCL) domain class, such as those involved in syringomycin biosynthesis. In addition, bacteriocin analysis identified sactipeptides (56%) and lasso peptides (28%) as dominant types. Kyoto Encyclopedia of Genes and Genomes pathway analysis uncovered several secondary metabolite pathways including those for penicillin, cephalosporins, alkaloids, and phenazines. Rapid Annotation using Subsystem Technology further highlighted secondary metabolism pathways vital for microbial survival in Chitu Lake’s extreme environment.

Conclusions: The discovery of diverse biosynthetic gene cluster positions Chitu Lake as a valuable source of secondary metabolites, highlighting the biotechnological, industrial, pharmaceutical, agricultural and environmental potential of its extremophilic microbes and supporting further bioprospecting efforts.

https://doi.org/10.1016/j.ejbt.2025.06.002
PDF
HTML

References

Ali Y, Simachew A, Gessesse A. Diversity of culturable alkaliphilic nitrogen-fixing bacteria from a Soda Lake in the East African Rift Valley. Microorganisms 2022;10(9):1760. https://doi.org/10.3390/microorganisms10091760 PMid: 36144362

Cavicchioli R, Amils R, Wagner D, et al. Life and applications of extremophiles. Environ Microbiol 2011;13(8):1903-1907. https://doi.org/10.1111/j.1462-2920.2011.02512.x PMid: 22236328

Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 2018;42(3):353-375. https://doi.org/10.1093/femsre/fuy009 PMid: 29529204

Edbeib MF, Wahab RA, Huyop F. Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World J Microb Biot 2016;32:135. https://doi.org/10.1007/s11274-016-2081-9 PMid: 27344438

Corral P, Amoozegar MA, Ventosa A. Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Mar Drugs 2019;18(1):33. https://doi.org/10.3390/md18010033 PMid: 31906001

Ramawat KG, Goyal S. Co-evolution of secondary metabolites during biological competition for survival and advantage: An overview. In: Mérillon JM, Ramawat K, editors. Co-evolution of secondary metabolites. Reference Series in Phytochemistry. Cham: Springer; 2020. p. 3–17. https://doi.org/10.1007/978-3-319-96397-6_45

Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 2015;13(8):509–523. https://doi.org/10.1038/nrmicro3496 PMid: 26119570

Chen R, Wong HL, Kindler GS, et al. Discovery of an abundance of biosynthetic gene clusters in Shark Bay microbial mats. Front Microbiol 2020;11:1950. https://doi.org/10.3389/fmicb.2020.01950 PMid: 32973707

Vaishnav P, Demain AL. Unexpected applications of secondary metabolites. Biotechnol Adv 2011;29(2):223–229. https://doi.org/10.1016/j.biotechadv.2010.11.006 PMid: 21130862

Yadav AN, Kour D, Rana KL, et al. Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A, editors. New and future developments in microbial biotechnology and bioengineering. Elsevier; 2019. p. 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

Blin K, Shaw S, Augustijn HE, et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023;51(W1):W46–W50. https://doi.org/10.1093/nar/gkad344 PMid: 37140036

Doroghazi JR, Albright JC, Goering AW, et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 2014;10:963–968. https://doi.org/10.1038/nchembio.1659 PMid: 25262415

van Heel AJ, de Jong A, Song C, et al. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 2018;46(W1):W278–W281. https://doi.org/10.1093/nar/gky383 PMid: 29788290

Helfrich EJ, Lin GM, Voigt CA, et al. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 2019;15(1):2889–2906. https://doi.org/10.3762/bjoc.15.283 PMid: 31839835

Shi J, Xu X, Liu PY, et al. Discovery and biosynthesis of guanipiperazine from a NRPS-like pathway. Chem Sci 2021;12(8):2925–2930. https://doi.org/10.1039/D0SC06135B PMid: 34164059

Han SW, Won HS. Advancements in the application of ribosomally synthesized and post-translationally modified peptides (RiPPs). Biomol 2024;14(4):479. https://doi.org/10.3390/biom14040479 PMid: 38672495

Chali K, Belay Z, Bacha K. In vitro bioassay of antibacterial and antifungal activity studies of Actinomycetes from Soda Lakes of Ethiopia. Sys Rev Pharm 2022;13(8):798–807.

Mulugeta K, Kamaraj M, Tafesse M, et al. Biomolecules from Serratia sp. CS1 indigenous to Ethiopian natural alkaline lakes: biosurfactant characteristics and assessment of compatibility in a laundry detergent. Environ Monit Assess 2022;194(12):873. https://doi.org/10.1007/s10661-022-10533-7 PMid: 36227369

Balcha ES, Macey MC, Gemeda MT, et al. Mining the microbiome of Lake Afdera to gain insights into microbial diversity and biosynthetic potential. FEMS Microbes 2024;5:xtae008. https://doi.org/10.1093/femsmc/xtae008 PMid: 385606258.

Mantri SS, Negri T, Sales-Ortells H, et al. Metagenomic sequencing of multiple soil horizons and sites in close vicinity revealed novel secondary metabolite diversity. mSystems 2021;6(5):e01018-21. https://doi.org/10.1128/msystems.01018-21 PMid: 34636675

Loke KK, Rahnamaie-Tajadod R, Yeoh CC, et al. Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. PeerJ 2017;5:e2938. https://doi.org/10.7717/peerj.2938 PMid: 28265493

Verma SK, Singh H, Sharma PC. An improved method suitable for isolation of high-quality metagenomic DNA from diverse soils. 3 Biotech 2017;7:171. https://doi.org/10.1007/s13205-017-0847-x PMid: 28660454

Perez-Mon C, Qi W, Vikram S, et al. Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps). Microb Genom 2021;7(4):000558. https://doi.org/10.1099/mgen.0.000558 PMid: 33848236

Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014;513(7516):59–64. https://doi.org/10.1038/nature13568 PMid: 25079328

Wang B, Wang X, Wang Z, et al. Comparative metagenomic analysis reveals rhizosphere microbial community composition and functions help protect grapevines against salt stress. Front Microbiol 2023;14:1102547. https://doi.org/10.3389/fmicb.2023.1102547 PMid: 36891384

Yang J, Li W, Teng D, et al. Metagenomic insights into microbial community structure, function, and salt adaptation in saline soils of arid land, China. Microorganisms 2022;10(11):2183. https://doi.org/10.3390/microorganisms10112183 PMid: 36363774

Sieber CM, Probst AJ, Sharrar A, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 2018;3(7):836–843. https://doi.org/10.1038/s41564-018-0171-1 PMid: 29807988

Keller-Costa T, Kozma L, Silva SG, et al. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. Microbiome 2022;10(1):151. https://doi.org/10.1186/s40168-022-01343-7 PMid: 36138466

Parks DH, Imelfort M, Skennerton CT, et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25(7):1043–1055. https://doi.org/10.1101/gr.186072.114 PMid: 25977477

Hao DC, Zhang CR, Xiao PG. The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing. J Basic Microbiol 2018;58(6):501–512. https://doi.org/10.1002/jobm.201700663 PMid: 29676472

Terlouw BR, Blin K, Navarro-Munoz JC, et al. MIBiG 3.0: A community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res 2023;51(D1):D603–D610. https://doi.org/10.1093/nar/gkac1049 PMid: 36399496

Walker AS, Clardy J. A machine learning bioinformatics method to predict biological activity from biosynthetic gene clusters. J Chem Inf Model 2021;61(6):2560–2571. https://doi.org/10.1021/acs.jcim.0c01304 PMid: 34042443

Klau LJ, Podell S, Creamer KE, et al. The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function. J Biol Chem 2022;298(10):102480. https://doi.org/10.1016/j.jbc.2022.102480 PMid: 36108739

Martínez-Espinosa RM. Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments. Int J Mol Sci 2020;21(12):4228. https://doi.org/10.3390/ijms21124228 PMid: 32545812

Vavourakis CD, Andrei AS, Mehrshad M, et al. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 2018;6:168. https://doi.org/10.1186/s40168-018-0548-7 PMid: 30231921

Paul Antony C, Kumaresan D, Hunger S, et al. Microbiology of Lonar Lake and other soda lakes. ISME J 2013;7(3):468–476. https://doi.org/10.1038/ismej.2012.137 PMid: 23178675

Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 2007;5(4):316–323. https://doi.org/10.1038/nrmicro1619 PMid: 17334387

Parrilli E, Tedesco P, Fondi M, et al. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys Life Rev 2021;36:137–161. https://doi.org/10.1016/j.plrev.2019.04.003 PMid: 31072789

Cho SH, Lee E, Ko SR, et al. Elucidation of the biosynthetic pathway of vitamin B groups and potential secondary metabolite gene clusters via genome analysis of a marine bacterium Pseudoruegeria sp. M32A2M. J Microbiol Biotechnol 2020;30(4):505-14. https://doi.org/10.4014/jmb.1911.11006 PMid: 31986560

Costa JAV, Cassuriaga APA, Moraes L, et al. Biosynthesis and potential applications of terpenes produced from microalgae. Bioresour Technol Rep 2022;19:101166. https://doi.org/10.1016/j.biteb.2022.101166

Fan M, Yuan S, Li L, et al. Application of terpenoid compounds in food and pharmaceutical products. Fermentation 2023;9(2):119. https://doi.org/10.3390/fermentation9020119

Avalos M, Garbeva P, Vader L, et al. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2022;39(2):249–272. https://doi.org/10.1039/D1NP00047K PMid: 34612321

Zhong Z, He B, Li J, et al. Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs). Synth Syst Biotechnol 2020;5(3):155–172. https://doi.org/10.1016/j.synbio.2020.06.002 PMid: 32637669

Li C, Alam K, Zhao Y, et al. Mining and biosynthesis of bioactive lanthipeptides from microorganisms. Front Bioeng Biotechnol 2021;9:692466. https://doi.org/10.3389/fbioe.2021.692466 PMid: 34395400

Chen Y, Yang Y, Ji X, et al. The SCIFF?derived lanthipeptides participate in quorum sensing in solventogenic clostridia. J Biotechnol 2020;200:136–144. https://doi.org/10.1002/biot.202000136 PMid: 32713052

Precord TW, Mahanta N, Mitchell DA. Reconstitution and substrate specificity of the thioether-forming radical S-adenosylmethionine enzyme in freyrasin biosynthesis. ACS Chem Biol 2019;14(9):1981–1989. https://doi.org/10.1021/acschembio.9b00457 PMid: 31449382

Bilstein A, Heinrich A, Rybachuk A, et al. Ectoine in the treatment of irritations and inflammations of the eye surface. Biomed Res Int 2021;2021(1):8885032. https://doi.org/10.1155/2021/8885032 PMid: 33628826

Sehrawat A, Sindhu SS, Glick BR. Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 2022;32(1):15–38. https://doi.org/10.1016/S1002-0160(21)60058-9

Tamang P, Upadhaya A, Paudel P, et al. Mining biosynthetic gene clusters of Pseudomonas vancouverensis utilizing whole genome sequencing. Microorganisms 2024;12(3):548. https://doi.org/10.3390/microorganisms12030548 PMid: 38543599

Johnston I, Osborn LJ, Markley RL, et al. Identification of essential genes for Escherichia coli aryl polyene biosynthesis and function in biofilm formation. NPJ Biofilms Microbe 2021;7(1):56. https://doi.org/10.1038/s41522-021-00226-3 PMid: 34215744

Ye YQ, Hao ZP, Yue YY, et al. Characterization of Kordiimonas marina sp. nov. and Kordiimonas laminariae sp. nov. and comparative genomic analysis of the genus Kordiimonas, a marine-adapted taxon. Front Mar Sci 2022;9:919253. https://doi.org/10.3389/fmars.2022.919253

Reshi ZA, Ahmad W, Lukatkin AS, et al. From nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and in vitro approaches. Metabolites 2023;13(8):895. https://doi.org/10.3390/metabo13080895 PMid: 37623839

Alam K, Islam MM, Li C, et al. Genome mining of Pseudomonas species: Diversity and evolution of metabolic and biosynthetic potential. Molecules 2021;26(24):7524. https://doi.org/10.3390/molecules26247524 PMid: 34946606

Taft F, Brünjes M, Floss HG, et al. Highly active ansamitocin derivatives: Mutasynthesis using an AHBA?blocked mutant. ChemBioChem 2008;9(7):1057–1060. https://doi.org/10.1002/cbic.200700742 PMid: 18381586

Fernández-Martínez LT, Hoskisson PA. Expanding, integrating, sensing and responding: The role of primary metabolism in specialised metabolite production. Curr Opin Microbiol 2019;51:16–21. https://doi.org/10.1016/j.mib.2019.03.006 PMid: 31005749

Bruna P, Núñez-Montero K, Contreras MJ, et al. Biosynthetic gene clusters with biotechnological applications in novel Antarctic isolates from Actinomycetota. Appl Microbiol Biot 2024;108(1):325. https://doi.org/10.1007/s00253-024-13154-x PMid: 38717668

Kayrouz CM, Zhang Y, Pham TM, et al. Genome mining reveals the phosphonoalamide natural products and a new route in phosphonic acid biosynthesis. ACS Chem Biol 2020;15(7):1921-1929. https://doi.org/10.1021/acschembio.0c00256 PMid: 32484327

Zhang Y, Chen L, Wilson JA, et al. Valinophos reveals a new route in microbial phosphonate biosynthesis that is broadly conserved in nature. J Am Chem Soc 2022;144(22):9938-9948. https://doi.org/10.1021/jacs.2c02854 PMid: 35617676

Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024;5:90-108. https://doi.org/10.1039/D3CB00172E PMid: 38333193

Ren H, Dommaraju SR, Huang C, et al. Genome mining unveils a class of ribosomal peptides with two amino termini. Nat Commun 2023;14(1):1624. https://doi.org/10.1038/s41467-023-37287-1 PMid: 36959188

Wilson J, Cui J, Nakao T, et al. Discovery of antimicrobial phosphonopeptide natural products from Bacillus velezensis by genome mining. Appl Environ Microbiol 2023;89(6):e00338-23. https://doi.org/10.1128/aem.00338-23 PMid: 37377428

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Electronic Journal of Biotechnology