Abstract
Background: The rising challenges of antibiotic resistance and cancer necessitate the development of sustainable, cost-effective, and multifunctional therapeutic agents. This study introduces a green synthesis approach for bimetallic nanoparticles (BNPs) using agro-waste materials.
Results: For the first time, bimetallic titanium dioxide–zinc oxide (TiO2-ZnO) BNPs were synthesized using onion peel extract as a natural reducing and stabilizing agent. UV–Vis spectroscopy confirmed nanoparticle formation with a peak corresponding to a size of approximately 320 nm. DLS showed an average hydrodynamic diameter of 145.1 nm, and TEM revealed monodispersed nanoparticles, ranging from 80 to 150 nm. The BNPs exhibited broad-spectrum antimicrobial activity with MIC values of 500 μg/mL against Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans; 1000 μg/mL against Staphylococcus aureus; and 250 μg/mL against Escherichia coli. They also demonstrated significant antibiofilm activity against B. subtilis-MRSA with a 63.1% inhibition rate at 125 μg/mL. Additionally, TiO2-ZnO BNPs showed potent cytotoxic effects on MCF-7 breast cancer cells, with an IC50 of 5.97 ± 0.37 μg/mL, and anticancer activity was mediated by caspase-8 activation and VEGFR-2 downregulation.
Conclusions: This green-synthesized TiO2-ZnO BNPs offer a promising dual-function nanoplatform for combating microbial infections and cancer, highlighting the potential of sustainable nanotechnology for biomedical applications.
References
- Haleem A, Javaid M, Singh RP, et al. Applications of nanotechnology in medical field: a brief review. Global Health Journal 2023;7(2):70-77. https://doi.org/10.1016/j.glohj.2023.02.008
- Samuel MS, Ravikumar M, John JA, et al. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts 2022;12(5):459. https://doi.org/10.3390/catal12050459
Hheidari A, Mohammadi J, Ghodousi M, et al. Metal-based nanoparticle in cancer treatment: Lessons learned and challenges. Frontiers in Bioengineering and Biotechnology 2024;12:1436297. https://doi.org/10.3389/fbioe.2024.1436297 PMid: 39055339
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Materials 2022;5:1593-1615. https://doi.org/10.1007/s42247-021-00335-x PMid: 35005431
Soliman MK, Abu-Elghait M, Salem SS, et al. Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Conversion and Biorefinery 2024, 14:28253-28270. https://doi.org/10.1007/s13399-022-03507-9
Idris DS, Roy A. Synthesis of bimetallic nanoparticles and applications—An updated review. Crystals 2023;13(4):637. https://doi.org/10.3390/cryst13040637
Sajid M. Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science & Health 2022;25:100319. https://doi.org/10.1016/j.coesh.2021.100319
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology 2022;20:262. https://doi.org/10.1186/s12951-022-01477-8 PMid: 35672712
Liu L, Corma A. Bimetallic sites for catalysis: From binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chemical Reviews 2023;123(8):4855-4933. https://doi.org/10.1021/acs.chemrev.2c00733 PMid: 36971499
Almuhayawi MS, Alruhaili MH, Soliman MK, et al. Investigating the in vitro antibacterial, antibiofilm, antioxidant, anticancer and antiviral activities of zinc oxide nanoparticles biofabricated from Cassia javanica. Plos one 2024;19(10):e0310927. https://doi.org/10.1371/journal.pone.0310927 PMid: 39352889
Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics 2015;40(4):277-283. PMid: 25859123
Selim MT, Soliman MK, Hashem AH, et al. Biosynthesis of silver nanoparticles from endophytic fungi and their role in plant disease management. In: Abd-Elsalam KA, Hashem AH (eds). Fungal Endophytes Volume II: Applications in Agroecosystems and Plant Protection: Singapore: Springer Nature Singapore 2025:357-382. https://doi.org/10.1007/978-981-97-8804-0_12
Soliman MK, Amin MA-A, Nowwar AI, et al. Green synthesis of selenium nanoparticles from Cassia javanica flowers extract and their medical and agricultural applications. Scientific Reports 2024;14:26775. https://doi.org/10.1038/s41598-024-77353-2 PMid: 39500933
Nwobodo DC, Ugwu MC, Anie CO, et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis 2022;36(9):e24655. https://doi.org/10.1002/jcla.24655 PMid: 35949048
Muruganandham M, Al-Otibi FO, Alharbi RI, et al. Antibacterial, antifungal, antioxidant, and cytotoxicity activities of the aqueous extract of Syzygium aromaticum-mediated synthesized novel silver nanoparticles. Green Processing and Synthesis 2023;12(1):20230188. https://doi.org/10.1515/gps-2023-0188
Brianna, Lee SH. Chemotherapy: how to reduce its adverse effects while maintaining the potency? Medical Oncology 2023;40:88. https://doi.org/10.1007/s12032-023-01954-6 PMid: 36735206
Shehabeldine AM, Doghish AS, El-Dakroury WA, et al. Antimicrobial, antibiofilm, and anticancer activities of syzygium aromaticum essential oil nanoemulsion. Molecules 2023, 28:5812. https://doi.org/10.3390/molecules28155812 PMid: 37570781
Ali OM, Hasanin MS, Suleiman WB, et al. Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: antimicrobial, antioxidant, and anticancer activities. Biomass Conversion and Biorefinery 2024;14:6987-6998. https://doi.org/10.1007/s13399-022-02772-y
Hashem AH, El-Sayyad GS. Antimicrobial and anticancer activities of biosynthesized bimetallic silver-zinc oxide nanoparticles (Ag-ZnO NPs) using pomegranate peel extract. Biomass Conversion and Biorefinery 2024;14:20345-20357. https://doi.org/10.1007/s13399-023-04126-8
Hashem AH, Saied E, Ali OM, et al. Pomegranate Peel Extract Stabilized Selenium Nanoparticles Synthesis: Promising Antimicrobial Potential, Antioxidant Activity, Biocompatibility, and Hemocompatibility. Applied Biochemistry and Biotechnology 2023;195:5753-5776. https://doi.org/10.1007/s12010-023-04326-y PMid: 36705842
Hashem AH, Selim TA, Alruhaili MH, et al. Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. Journal of Functional Biomaterials 2022;13(3):112. https://doi.org/10.3390/jfb13030112 PMid: 35997450
Salem SS, Badawy MSEM, Al-Askar AA, et al. Green biosynthesis of selenium nanoparticles using orange peel waste: characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life 2022;12(6):893. https://doi.org/10.3390/life12060893 PMid: 35743924
Sarathi R, Sheeba N, Essaki ES, et al. Titanium doped Zinc Oxide nanoparticles: A study of structural and optical properties for photocatalytic applications. Materials Today: Proceedings 2022;64:1859-1863. https://doi.org/10.1016/j.matpr.2022.06.387
Rahman KH, Kar AK. Titanium-di-oxide (TiO2) concentration-dependent optical and morphological properties of PAni-TiO2 nanocomposite. Materials Science in Semiconductor Processing 2020;105:104745. https://doi.org/10.1016/j.mssp.2019.104745
Parrino F, Pomilla FR, Camera-Roda G, et al. Properties of titanium dioxide. In: Parrino F, Palmisano L (eds), Titanium Dioxide (TiO?) and Its Applications: Elsevier; 2021:13-66. https://doi.org/10.1016/B978-0-12-819960-2.00001-8
Smith R, Silwana B, Matoetoe MC. Electrochemical properties modulation of Zinc oxide nanoparticles. Journal of the Indian Chemical Society 2023;100(8):101054. https://doi.org/10.1016/j.jics.2023.101054
Nagaraj B, Malakar B, Divya T, et al. Synthesis of plant mediated gold nanoparticles using flower extracts of Carthamus tinctorius L. (Safflower) and evaluation of their biological activities. Digest Journal of Nanomaterials and Biostructures 2012;7(3):1289-1295.
Padmanabhan L, Divya T, Malakar B, et al. Preparation of gold nanoparticles from Helianthus annuus (sun flower) flowers and evaluation of their antimicrobial activities. International Journal of Pharma and Bio Sciences 2012;3(1):439-446.
Lava MB, Muddapur UM, Basavegowda N, et al. Characterization, anticancer, antibacterial, anti-diabetic and anti-inflammatory activities of green synthesized silver nanoparticles using Justica wynaadensis leaves extract. Materials Today: Proceedings 2021;46:5942-5947. https://doi.org/10.1016/j.matpr.2020.10.048
Basavegowda N, Somu P, Shabbirahmed AM, et al. Bimetallic p-ZnO/n-CuO nanocomposite synthesized using Aegle marmelos leaf extract exhibits excellent visible-light-driven photocatalytic removal of 4-nitroaniline and methyl orange. Photochemical & Photobiological Sciences 2022;21:1357-1370. https://doi.org/10.1007/s43630-022-00224-0 PMid: 35451802
Mishra K, Basavegowda N, Lee YR. Biosynthesis of Fe, Pd, and Fe–Pd bimetallic nanoparticles and their application as recyclable catalysts for [3 + 2] cycloaddition reaction: a comparative approach. Catalysis Science & Technology 2015;5:2612-2621. https://doi.org/10.1039/C5CY00099H
Abu-Elghait M, Soliman MK, Azab MS, et al. Response surface methodology: Optimization of myco-synthesized gold and silver nanoparticles by Trichoderma saturnisporum. Biomass Conversion and Biorefinery 2025;15:4211-4224. https://doi.org/10.1007/s13399-023-05188-4
Ahmed SF, Mofijur M, Rafa N, et al. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research 2022;204(part A):111967. https://doi.org/10.1016/j.envres.2021.111967
Zhou F, Peterson T, Fan Z, et al. The commonly used stabilizers for phytochemical-based nanoparticles: Stabilization effects, mechanisms, and applications. 2023;15(18):3881. https://doi.org/10.3390/nu15183881 PMid: 37764665
Kang C-W, Kolya H. Green synthesis of Ag-Au bimetallic nanocomposites using waste tea leaves extract for degradation Congo red and 4-nitrophenol. Sustainability 2021;13(6):3318. https://doi.org/10.3390/su13063318
Sonu, Rani GM, Pathania D, et al. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Science of the Total Environment 2023;875:162667. https://doi.org/10.1016/j.scitotenv.2023.162667 PMid: 36894105
Kaur N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta 2024;267:125114. https://doi.org/10.1016/j.talanta.2023.125114 PMid: 37683321
Suliman AA, El?Dewiny CY, Soliman MK, et al. Investigation of the effects of applying bio?magnesium oxide nanoparticle fertilizer to Moringa oleifera plants on the chemical and vegetative properties of the plants’ leaves. Biotechnology Journal 2025;20(3):e202400536. https://doi.org/10.1002/biot.202400536 PMid: 40059570
Brar KK, Magdouli S, Othmani A, et al. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environmental Research 2022;207:112202. https://doi.org/10.1016/j.envres.2021.112202 PMid: 34655607
Rodrigues AS, Almeida DP, Simal-Gándara J, et al. Onions: a source of flavonoids. In: Justino GC (ed), Flavonoids: From Biosynthesis Human Health. InTech 2017:23:439. https://doi.org/10.5772/intechopen.69896
Lohri CR, Diener S, Zabaleta I, et al. Treatment technologies for urban solid biowaste to create value products: a review with focus on low-and middle-income settings. Reviews in Environmental Science and Bio/Technology 2017;16:81-130. https://doi.org/10.1007/s11157-017-9422-5
Jasim NO, Abd-Ali NK. Biosynthesis of ZnO nanoparticle in presence of red onion extract. Plant Archives 2020:20(2):7854-7856.
Muhammad NAM, Awang NA, Mahmud NNHEN, et al. Biosynthesized zinc oxide and titanium dioxide nanoparticles by aloe vera extract for tunable Q-switched application. Optical Fiber Technology 2023;77:103276. https://doi.org/10.1016/j.yofte.2023.103276
Perez C, Pauli M, Bazerque P. An antibiotic assay by agar-well diffusion method. Acta Biologiae et Medicinae Experimentalis 1990;15:113-115.
Abbey TC, Deak E. What's new from the CLSI subcommittee on antimicrobial susceptibility testing M100. Clinical Microbiology Newsletter 2019;41(23):203-209. https://doi.org/10.1016/j.clinmicnews.2019.11.002
Wahman S, Emara M, Shawky RMJRJoP. In-vitro assessment of staphylococci biofilms formed under biologically-relevant conditions and correlation to the biofilm genotype. Research Journal of Pharmacy and Technology 2023;16(5):2273-2279. https://doi.org/10.52711/0974-360X.2023.00373
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4 PMid: 6606682
Toppo SR. Nanomaterials’ synthesis from the fruit wastes. In: Bhardwaj AK, Srivastav AR, Dwivedi K et al. (eds). Green and Sustainable Approaches Using Wastes for the Production of Multifunctional Nanomaterials: Elsevier; 2024:345-364. https://doi.org/10.1016/B978-0-443-19183-1.00018-0
Dubey S, Virmani T, Yadav SK, et al. Breaking barriers in eco?friendly synthesis of plant?mediated metal/metal oxide/bimetallic nanoparticles: antibacterial, anticancer, mechanism elucidation, and versatile utilizations. Journal of Nanomaterials 2024;2024(1):9914079. https://doi.org/10.1155/2024/9914079
Ettadili FE, Aghris S, Laghrib F, et al. Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. Journal of Molecular Structure 2022;1248:131538. https://doi.org/10.1016/j.molstruc.2021.131538
Acharya C, Mishra S, Chaurasia SK, et al. Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications. BioMetals 2025;38:21-54. https://doi.org/10.1007/s10534-024-00642-w PMid: 39377881
Suhag R, Rohit K, Atul D, et al. Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Critical Reviews in Food Science and Nutrition 2023;63:6757-6776. https://doi.org/10.1080/10408398.2022.2043237 PMid: 35196934
Ali H, Dixit S, Almutairi BO, et al. Synthesis and characterization of eco-friendly TiO2 nanoparticle from combine extract of onion and garlic peel. Journal of King Saud University 2023;35(8):102918. https://doi.org/10.1016/j.jksus.2023.102918
Khamis M, Gouda GA, Nagiub AM. Green synthesis of Zinc Oxide Nanoparticles: Characterization, organic dye degradation and evaluation of their antibacterial activity. Al-Azhar Bulletin of Science 2023;34(2):7. https://doi.org/10.58675/2636-3305.1650
Hasanin MS, Hashem AH, Al-Askar AA, et al. A novel nanocomposite based on mycosynthesized bimetallic zinc-copperoxide nanoparticles, nanocellulose and chitosan: characterization, antimicrobial and photocatalytic activities. Electronic Journal of Biotechnology 2023;65:45-55. https://doi.org/10.1016/j.ejbt.2023.05.001
Fouda A, Eid AM, Abdelkareem A, et al. Phyco-synthesized zinc oxide nanoparticles using marine macroalgae, Ulva fasciata Delile, characterization, antibacterial activity, photocatalysis, and tanning wastewater treatment. Catalysts 2022;12(7):756. https://doi.org/10.3390/catal12070756
Khalil AM, Saied E, Mekky AE, et al. Green biosynthesis of bimetallic selenium–goldnanoparticles using Pluchea indica leaves and their biological applications. Frontiers in Bioengineering and Biotechnology 2024;11:1294170. https://doi.org/10.3389/fbioe.2023.1294170 PMid: 38274007
Hashem AH, El-Sayyad GS, Al-Askar AA, et al. Watermelon rind mediated biosynthesis of bimetallic selenium-silver nanoparticles: Characterization, antimicrobial and anticancer activities. Plants 2023;12(18):3288. https://doi.org/10.3390/plants12183288 PMid: 37765453
Hashem AH, Al-Askar AA, Saeb MR, et al. Sustainable biosynthesized bimetallic ZnO@SeO nanoparticles from pomegranate peel extracts: antibacterial, antifungal and anticancer activities. RSC Advances 2023;13:22918-22927. https://doi.org/10.1039/D3RA03260D PMid: 37520090
Selim S, Almuhayawi MS, Saddiq AA, et al. Synthesis of novel MgO-ZnO nanocomposite using Pluchea indica leaf extract and study of their biological activities. Bioresources and Bioprocessing 2025;12:33. https://doi.org/10.1186/s40643-025-00848-x PMid: 40220116
Hashem AH, Rizk SH, Abdel-Maksoud MA, et al. Unveiling anticancer, antimicrobial, and antioxidant activities of novel synthesized bimetallic boron oxide–zinc oxide nanoparticles. RSC Advances 2023;13:20856-20867. https://doi.org/10.1039/D3RA03413E PMid: 37448639
Elkady FM, Hashem AH, Salem SS, et al. Unveiling biological activities of biosynthesized starch/silver-selenium nanocomposite using Cladosporium cladosporioides CBS 174.62. BMC Microbiology 2024;24:78. https://doi.org/10.1186/s12866-024-03228-1 PMid: 38459502
Lee G, Lee YJ, Kim Y-J, Park Y. Synthesis of Au–Ag bimetallic nanoparticles using Korean red ginseng (Panax ginseng Meyer) root extract for chemo-photothermal anticancer therapy. Archives of Pharmacal Research 2023;46:659-678. https://doi.org/10.1007/s12272-023-01457-y PMid: 37592169
Elsayed KA, Alomari M, Drmosh QA, et al. Fabrication of ZnO-Ag bimetallic nanoparticles by laser ablation for anticancer activity. Alexandria Engineering Journal 2022;61:1449-1457. https://doi.org/10.1016/j.aej.2021.06.051
Austin J, Minelli C, Hamilton D, et al. Nanoparticle number concentration measurements by multi-angle dynamic light scattering. Journal of Nanoparticle Research 2020;22:108. https://doi.org/10.1007/s11051-020-04840-8
Rohmah M, Raharjo S, Hidayat C, et al. Application of response surface methodology for the optimization of ??carotene?loaded nanostructured lipid carrier from mixtures of palm stearin and palm olein. Journal of the American Oil Chemists' Society 2020;97(2):213-223. https://doi.org/10.1002/aocs.12310
Nwozo OS, Magdalene EE, Maduabuchi AP, et al. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. International Journal of Food Properties 2023;26:359-388. https://doi.org/10.1080/10942912.2022.2157425
Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human Health. Molecules 2023;28(4):1845. https://doi.org/10.3390/molecules28041845 PMid: 36838831
Villagrán Z, Anaya-Esparza LM, Velázquez-Carriles CA, et al. Plant-based extracts as reducing, capping, and stabilizing agents for the green synthesis of inorganic nanoparticles. Resources 2024;13(6):70. https://doi.org/10.3390/resources13060070
Jeevanandam J, Kiew SF, Boakye-Ansah S, et al. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 2022, 14:2534-2571. https://doi.org/10.1039/D1NR08144F PMid: 35133391
El-Amier YA, Abduljabbar BT, El-Zayat MM, et al. Biosynthesis of metal/metal oxide nanoparticles via Deverra tortuosa: characterization, GC/MS profiles, and biological potential. Scientific Reports 2024;14:23522. https://doi.org/10.1038/s41598-024-74471-9 PMid: 39384959
Anjum S, Nawaz K, Ahmad B, et al. Green synthesis of biocompatible core–shell (Au–Ag) and hybrid (Au–ZnO and Ag–ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Advances 2022;12:23845-23859. https://doi.org/10.1039/D2RA03196E PMid:3 6093232
Vorontsov AV, Tsybulya SV. Influence of nanoparticles size on XRD patterns for small monodisperse nanoparticles of Cu0 and TiO2 anatase. Industrial & Engineering Chemistry Research 2018;57(7):2526-2536. https://doi.org/10.1021/acs.iecr.7b04480
Nadjia L, Abdelkader E. Design, synthesis and characterization of ceria: assessment of crystallite size and intrinsic strain using XRD profile analysis and its photocatalytic applications. Journal of the Iranian Chemical Society 2025;22:297-324. https://doi.org/10.1007/s13738-024-03149-w
Shekhar S, Singh S, Gandhi N, et al. Green chemistry based benign approach for the synthesis of titanium oxide nanoparticles using extracts of Azadirachta indica. Cleaner Engineering and Technology 2023;13:100607. https://doi.org/10.1016/j.clet.2023.100607
Asaulyuk T, Saribyekova Y, Semeshko O, et al. Synthesis and structural characterization of ZnO nanoparticles. Herald of Khmelnytskyi National University 2022;311:35-41. https://doi.org/10.31891/2307-5732-2022-311-4-35-41
Modi S, Fulekar MJ. Green synthesis of zinc oxide nanoparticles using garlic skin extract and its characterization. Journal of Nanoscructures 2020;10(1):20-27. https://doi.org/10.22052/JNS.2020.01.003
Masud S, Munir H, Irfan M, et al. Allium cepa-based zinc oxide nanoparticles: characterization and biochemical potentials. Bioinspired, Biomimetic and Nanobiomaterials 2023;12(2):82-93. https://doi.org/10.1680/jbibn.22.00038
Kaabo HE, Saied E, Hassan SD, et al. Penicillium oxalicum-mediated the green synthesis of silica nanoparticles: characterization and environmental applications. Biomass Conversion and Biorefinery 2024;15:5229-5246. https://doi.org/10.1007/s13399-024-05350-6
Qiang ZX, Hong YL, Meng T, et al. ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomedical and Environmental Sciences 2011;24(6):661-669. https://doi.org/10.3967/0895-3988.2011.06.011
Rashid F, Pervaiz I, Malik H, et al. Investigations on synergistic and antioxidant actions of medicinal plant-based biosynthesis of zinc oxide nanoparticles against E. coli and K. pneumonia bacteria. Combinatorial Chemistry & High Throughput Screening 2022;25(7):1200-1206. https://doi.org/10.2174/1386207324666210302102111 PMid: 33653240
Rajashekara S, Shrivastava A, Sumhitha S, et al. Biomedical applications of biogenic zinc oxide nanoparticles manufactured from leaf extracts of Calotropis gigantea (L.) Dryand. BioNanoScience 2020;10:654-671. https://doi.org/10.1007/s12668-020-00746-w
Maduabuchi E, Siwe-Nound X. Green synthesis of zinc oxide nanoparticles and their antibiotic-potentiation activities of mucin against pathogenic bacteria. Research Journal of Nanoscience and Nanotechnology 2020;10:9-14. https://doi.org/10.3923/rjnn.2020.9.14
Nachimuthu S, Thangamani C, Thiyagarajulu N, et al. Facile synthesis of ZnO-Y2O3 nanocomposite for photocatalytic and biological applications. Catalysis Communications 2023;184:106786. https://doi.org/10.1016/j.catcom.2023.106786
Elkady FM, Badr BM, Saied E, et al. Green biosynthesis of bimetallic copper oxide-selenium nanoparticles using leaf extract of Lagenaria siceraria: antibacterial, anti-virulence activities against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine 2025;20:4705-4727. https://doi.org/10.2147/IJN.S497494 PMid: 40255676
Kamel Z, Helmy NA, Soliman MK, et al. Impact of biofilm production in methicillin resistant Staphylococcus aureus among diabetic foot patient. Egyptian Journal of Medical Microbiology 2018;27:93-98. https://doi.org/10.21608/ejmm.2018.285547
Anupong W, On-uma R, Jutamas K, et al. Antibacterial, antifungal, antidiabetic, and antioxidant activities potential of Coleus aromaticus synthesized titanium dioxide nanoparticles. Environmental Research 2023;216(Part 3):114714. https://doi.org/10.1016/j.envres.2022.114714 PMid: 36334834
Chemingui H, Moulahi A, Missaoui T, et al. A novel green preparation of zinc oxide nanoparticles with Hibiscus sabdariffa L.: photocatalytic performance, evaluation of antioxidant and antibacterial activity. Environmental Technology 2024;45(5):926-944. https://doi.org/10.1080/09593330.2022.2130108 PMid: 36170044
Shivalingam C, Gurumoorthy K, Murugan R, et al. Herbal-based green synthesis of TB-ZnO-TiO (II) nanoparticles composite from Terminalia bellirica: Characterization, toxicity assay, antioxidant assay, and antimicrobial activity. Cureus 2024;16(3):e55686. https://doi.org/10.7759/cureus.55686 PMid: 38586786
Bai Q, Zhang Y, Cai R, et al. AMP-Coated TiO2 doped ZnO nanomaterials enhanced antimicrobial activity and efficacy in otitis media treatment by elevating hydroxyl radical levels. International Journal of Nanomedicine 2024;19:2995-3007. https://doi.org/10.2147/IJN.S449888 PMid: 38559446
Pauzi N, Zain NM, Kutty RV, et al. Antibacterial and antibiofilm properties of ZnO nanoparticles synthesis using gum arabic as a potential new generation antibacterial agent. Materials Today: Proceedings 2021;41(Part 1):1-8. https://doi.org/10.1016/j.matpr.2020.06.359
Yeroslavsky G, Lavi R, Alishaev A, et al. Sonochemically-produced metal-containing polydopamine nanoparticles and their antibacterial and antibiofilm activity. Langmuir 2016;32(20):5201-5212. https://doi.org/10.1021/acs.langmuir.6b00576 PMid: 27133213
Wong CW, Chan YS, Jeevanandam J, et al. Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities. Journal of Cluster Science 2020;31:367-389. https://doi.org/10.1007/s10876-019-01651-3
Do?an S?, Kocaba? A. Green synthesis of ZnO nanoparticles with Veronica multifida and their antibiofilm activity. Human & Experimental Toxicology 2020;39(3):319-327. https://doi.org/10.1177/0960327119888270 PMid: 31726879
Masoudi M, Mashreghi M, Zenhari A, et al. Combinational antimicrobial activity of biogenic TiO2 NP/ZnO NPs nanoantibiotics and amoxicillin-clavulanic acid against MDR-pathogens. International Journal of Pharmaceutics 2024;652:123821. https://doi.org/10.1016/j.ijpharm.2024.123821 PMid: 38242259
Jin Y, Li B, Saravanakumar K, et al. Phytogenic titanium dioxide (TiO2) nanoparticles derived from Rosa davurica with anti-bacterial and anti-biofilm activities. Journal of Cluster Science 2022;33:1435-1443. https://doi.org/10.1007/s10876-021-02024-5
Fatima S, Ali K, Ahmed B, et al. Titanium dioxide nanoparticles Induce inhibitory effects against planktonic cells and biofilms of human oral cavity isolates of Rothia mucilaginosa, Georgenia sp. and Staphylococcus saprophyticus. Pharmaceutics 2021;13(10):1564. https://doi.org/10.3390/pharmaceutics13101564 PMid: 34683856
Dan S, Khan S. Green coalescence and characterization of Tio2 nanoparticles and evaluation of its antibiofilm activity. Rasayan Journal of Chemistry 2019,12(4):2252-2259. https://doi.org/10.31788/RJC.2019.1245341
Aljabali AA, Obeid MA, Bakshi HA, et al. Synthesis, characterization, and assessment of anti-cancer potential of ZnO nanoparticles in an in vitro model of breast cancer. Molecules 2022;27(6):1827. https://doi.org/10.3390/molecules27061827 PMid: 35335190
Lotfian H, Nemati F. Cytotoxic effect of TiO2 nanoparticles on breast cancer cell line (MCF-7). IIOAB J, 2016;7(Supp 4):219-224.
Gong L, Tang Y, An R, et al. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death and Disease 2017;8:e3080. https://doi.org/10.1038/cddis.2017.465 PMid: 28981095
Onodera R, Jimma Y, Suzuki A, et al. The regulation pathway of VEGF gene expression is different between 2D cells and 3D spheroids in human lung cancer cells. Biological and Pharmaceutical Bulletin 2023;46(4):608-613. https://doi.org/10.1248/bpb.b22-00772 PMid: 37005305
Amirchaghmaghi E, Rezaei A, Moini A, et al. Gene expression analysis of VEGF and its receptors and assessment of its serum level in unexplained recurrent spontaneous abortion. Cell Journal (Yakhteh) 2015;16(4):538-545. https://doi.org/10.22074/cellj.2015.498 PMid: 25685744

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Electronic Journal of Biotechnology
