Antimicrobial characteristics of endophytic Aspergillus terreus and acute oral toxicity analysis

Graphical abstract

Antimicrobial characteristics of endophytic Aspergillus terreus and acute oral toxicity analysis
PDF
HTML

Keywords

Acute toxicity
Antimicrobial
Antioxidants
Aspergillus
Endophytic fungi
Haematotoxicity
Psidium guajava

How to Cite

1.
Shehabeldine AM, Abdelaziz AM, Abdel-Maksoud MAA-M, El-Tayeb MA, Kiani BH, Hussein AS. Antimicrobial characteristics of endophytic Aspergillus terreus and acute oral toxicity analysis. Electron. J. Biotechnol. [Internet]. 2024 Nov. 15 [cited 2026 Jan. 26];72:1-11. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2459

Abstract

Background: Endophytic fungi produce biologically robust metabolites suitable for diverse applications, which support the increasing exploration of these fungi. The study aimed to investigate the in vitro antimicrobial properties of the metabolites of endophytic fungus Aspergillus terreus which isolated from the leaves of Psidium guajava plants while the acute oral toxicity was assessed in vivo.

Results: A. terreus (OR125572) was successfully isolated for the first time from P. guajava. The ethyl acetate extract of A. terreus exhibited antibactericidal effects against Enterobacter aerogenes with a minimum inhibitory concentration of 18.75 mg/ml in contrast to 75.00 ± 0.0, 37.50, and 37.50 mg/ml, respectively against Staphylococcus aureus, Escherichia coli, and Bacillus sphaericus were 75.00 ± 0.0, 37.50, and 37.50 mg/ml, respectively. Analysis of the crude extract obtained from A. terreus by GC-MS revealed a total of 32 distinct compounds. The major components included 1,2-benzenedicarboxylic acid, di-iso-octyl ester; hexyl oxecan-2-one and phenol. The acute oral toxicity study found no symptoms of toxicity and no mortality until the 14th d, suggesting that the LD50 value of A. terreus extract might exceed 1 ml/kg. The group receiving 0.5 ml/kg of A. terreus extract experienced a 42.9% increase in body weight, while administration of varying dosages resulted in a significant reduction in MCV levels. There was also a significant increase in the proportion of monocytes across all treated groups.

Conclusions: The study demonstrated the potential of A. terreus as a source of antimicrobial and other bioactive compounds, with relatively low acute toxicity.

https://doi.org/10.1016/j.ejbt.2024.07.003
PDF
HTML

References

Kokoska L, Kloucek P, Leuner O, et al. Plant-derived products as antibacterial and antifungal agents in human health care. Curr Med Chem. 2019;26(29):5501-5541. https://doi: https://doi.org/10.2174/0929867325666180831144344 PMid: 30182844

Hashem AH., Attia MS, Kandil EK, et al. Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microb Cell Fact. 2023;22:122. https://doi.org/10.1186/s12934-023-02131-0 PMid: 37407997

Hashem AH, El-Naggar ME, Abdelaziz AM, et al. Bio-based antimicrobial food packaging films based on hydroxypropyl starch/polyvinyl alcohol loaded with the biosynthesized zinc oxide nanoparticles. Int J Biol Macromol. 2023;249:126011. https://doi.org/10.1016/j.ijbiomac.2023.126011 PMid: 37517763

Khalil AMA, Hassan SED, Alsharif SM, et al. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules. 2021;11(2):140. https://doi.org/10.3390/biom11020140 PMid: 33499067

Flores G, Wu SB, Negrin A, et al. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem. 2015;170:327-35. https://doi.org/10.1016/j.foodchem.2014.08.076 PMid: 25306353

Kumar M, Tomar M, Amarowicz R, et al. Guava (Psidium guajava L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods. 2021;10(4):752. https://doi.org/10.3390/foods10040752 PMid: 33916183

Allo LB, Tandilimbong H, Manangsang F, et al. Guava fruit juice red increases levels pregnant women’s hemoglobin in Bokin Health Center. Res & Rev Health Care 2021;6(3):615-60. https://doi.org/10.32474/RRHOAJ.2021.06.000239

Naseer S, Hussain S, Naeem N, et al. The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience 2018;4:32. https://doi.org/10.1186/s40816-018-0093-8

Nantitanon W, Yotsawimonwat S, Okonogi S. Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT-Food Sci. and Tech. 2010;43(7):1095-103. https://doi.org/10.1016/j.lwt.2010.02.015

Gutiérrez RM, Mitchell S, Solis RV. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2008;117(1):1-27. https://doi.org/10.1016/j.jep.2008.01.025 PMid: 18353572

Abdelaziz AM, El-Wakil DA, Hashem AH, et al. Efficient role of endophytic Aspergillus terreus in biocontrol of Rhizoctonia solani causing damping-off disease of Phaseolus vulgaris and Vicia faba. Microorganisms 2023;11(6):1487. https://doi.org/10.3390/microorganisms11061487 PMid: 37374989

Attia MS, Hashem AH, Badawy AA, et al. Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: improving plant immunological, physiological and antifungal activities. Bot Stud. 2022;63(1):26. https://doi.org/10.1186/s40529-022-00357-6 PMid: 36030517

Hashem AH, Shehabeldine AM, Abdelaziz AM, et al. Antifungal activity of endophytic Aspergillus terreus extract against some fungi causing mucormycosis: ultrastructural study. Appl Biochem Biotechnol. 2022;194(8):3468-82. https://doi.org/10.1007/s12010-022-03876-x PMid: 35366185

Bengyella L, Yekwa EL, Subhani MN, et al. Invasive Aspergillus terreus morphological transitions and immunoadaptations mediating antifungal resistance. Infect Drug Resist. 2017;10:425-36. https://doi.org/10.2147/IDR.S147331 PMid: 29158685

van der Straat L, Vernooij M, Lammers M, et al. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Fact. 2014;13:11. https://doi.org/10.1186/1475-2859-13-11 PMid: 24438100

Sharaf MH, Abdelaziz AM, Kalaba MH, et al. Antimicrobial, antioxidant, cytotoxic activities and phytochemical analysis of fungal endophytes isolated from Ocimum basilicum. Appl Biochem Biotechnol. 2022;194(3):1271-89. https://doi.org/10.1007/s12010-021-03702-w PMid: 34661866

Shoayb M, Soliman HG, Abdelghany TM, et al. The occurrence of heavy metals in Qarun Lake and their influence on microbial biodiversity. Al-Azhar J. of Agr. Res. 2023;48(2):1-15. https://doi.org/10.21608/ajar.2023.196798.1117

Khalil AMA, Hashem AH, Abdelaziz AM. Occurrence of toxigenic Penicillium polonicum in retail green table olives from the Saudi Arabia market. Biocatal. Agric. Biotechnol 2019;21:101314. https://doi.org/10.1016/j.bcab.2019.101314

Hashem AH, Doghish AS, Ismail A, et al. A novel nanoemulsion based on clove and thyme essential oils: Characterization, antibacterial, antibiofilm and anticancer activities. Electron. J. Biotechnol 2024;68:20-30. https://doi.org/10.1016/j.ejbt.2023.12.001

Humphries RM, Ambler J, Mitchell SL, et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol. 2018;56(4):e01934-17. https://doi.org/10.1128/JCM.01934-17 PMid: 29367292

Shehabeldine AM, Amin BH, Hagras FA, et al. Potential antimicrobial and antibiofilm properties of copper oxide nanoparticles: time-kill kinetic essay and ultrastructure of pathogenic bacterial cells. Appl Biochem Biotechnol. 2023;195(1):467-485. https://doi.org/10.1007/s12010-022-04120-2 PMid: 36087233

Budhiraja A, Nepali K, Sapra S, et al. Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med. Chem. Res. 2013;22:323-329. https://doi.org/10.1007/s00044-012-0032-z

Creton S, Dewhurst IC, Earl LK, et al. Acute toxicity testing of chemicals—opportunities to avoid redundant testing and use alternative approaches. Crit Rev Toxicol. 2010;40(1):50-83. https://doi.org/10.3109/10408440903401511 PMid: 20144136

Albalawi MA, Abdelaziz AM, Attia MS, et al. Mycosynthesis of silica nanoparticles using Aspergillus niger: Control of Alternaria solani causing early blight disease, induction of innate immunity and reducing of oxidative stress in eggplant. Antioxidants 2022;11(12):2323. https://doi.org/10.3390/antiox11122323 PMid: 36552531

Badawy AA, Alotaibi MO, Abdelaziz AM, et al. Enhancement of seawater stress tolerance in barley by the endophytic fungus Aspergillus ochraceus. Metabolites. 2021;11(7):428. https://doi.org/10.3390/metabo11070428 PMid: 34209783

Attia MS, Salem MS, Abdelaziz AM. Endophytic fungi Aspergillus spp. reduce fusarial wilt disease severity, enhance growth, metabolism and stimulate the plant defense system in pepper plants. Biomass Convers. Biorefin. 2024;14:16603-13. https://doi.org/10.1007/s13399-022-03607-6

Abdelaziz AM, El-Wakil DA, Attia MS, et al. Inhibition of Aspergillus flavus growth and aflatoxin production in Zea mays L. using endophytic Aspergillus fumigatus. J Fungi 2022;8(5):482. https://doi.org/10.3390/jof8050482 PMid: 35628738

Khan IH, Javaid A. In vitro screening of Aspergillus spp. for their biocontrol potential against Macrophomina phaseolina. Plant Pathol. J. 2021;103:1195-205. https://doi.org/10.1007/s42161-021-00865-7

Khan IH, Javaid A. Antagonistic activity of Aspergillus versicolor against Macrophomina phaseolina. Braz J Microbiol. 2022;53(3):1613-21. https://doi.org/10.1007/s42770-022-00782-6 PMid: 35831780

Bashir U, Khan A, Javaid A. Herbicidal activity of Aspergillus niger metabolites against parthenium weed. Planta Daninha 2018;36:e018167123. https://doi.org/10.1590/s0100-83582018360100025

Shaheena S, Chintagunta AD, Dirisala VR, et al. Extraction of bioactive compounds from Psidium guajava and their application in dentistry. AMB Express. 2019;9:208. https://doi.org/10.1186/s13568-019-0935-x PMid: 31884522.

Barbalho SM, Farinazzi-Machado FMV, de Alvares Goulart R, et al. Psidium guajava (Guava): A plant of multipurpose medicinal applications. Med Aromat Plants Med Aromat Plants 2012;1(4):1000104. https://doi.org/10.4172/2167-0412.1000104

Hashem AH, Al-Askar AA, Elgawad HA, et al. Bacterial endophytes from Moringa oleifera leaves as a promising source for bioactive compounds. Separations 2023;10(7):395. https://doi.org/10.3390/separations10070395

Chatterjee S, Ghosh S, Mandal NC. Potential of an endophytic fungus Alternaria tenuissima PE2 isolated from Psidium guajava L. for the production of bioactive compounds. S Afr J Bot 2022;150:658-70. https://doi.org/10.1016/j.sajb.2022.08.016

Ujam NT, Ajaghaku DL, Okoye FBC, et al. Antioxidant and immunosuppressive activities of extracts of endophytic fungi isolated from Psidium guajava and Newbouldia laevis. Phytomedicine Plus 2021;1(2):100028. https://doi.org/10.1016/j.phyplu.2021.100028

Chen GY, Bao-Hui R, Ya-Bin Yang, et al. Secondary metabolites of the fungus Aspergillus terreus. Chem. Nat. Compd. 2018;54:415-418. https://doi.org/10.1007/s10600-018-2366-3

Ashtekar N, Anand G, Prakash YP, et al. Aspergillus terreus: taxonomy, biology, and bioactive secondary metabolites with potential applications. In: Singh J, Gehlot P, editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, Oxford, pp. 215-223. https://doi.org/10.1016/B978-0-12-821005-5.00015-6

Melnick RL, Bailey BA, Backman PA. Bacterial endophytes of perennial crops for management of plant disease. Bacteria in Agrobiology: Disease management. In: Maheshwari D, editor. Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. 2013, pp. 49-76. https://doi.org/10.1007/978-3-642-33639-3_3

Shaker KH, Zohair MM, Hassan AZ, et al. LC–MS/MS and GC–MS based phytochemical perspectives and antimicrobial effects of endophytic fungus Chaetomium ovatoascomatis isolated from Euphorbia milii. Arch Microbiol. 2022;204(11):661. https://doi.org/10.1007/s00203-022-03262-5 PMid: 36192448

Metwally AM, Omar AA, Harraz FM, et al. Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves. Pharmacogn Mag. 2010;6(23):212-8. https://doi.org/10.4103/0973-1296.66939 PMid: 20931082

Khromykh NO, Lykholat YV, Didur OO, et al. Phytochemical profiles, antioxidant and antimicrobial activity of Actinidia polygama and A. arguta fruits and leaves. Biosyst. Divers 2022;30(1):39-45. https://doi.org/10.15421/012205 PMid: 35309720

Dolanbay SN, Aslim B. Comparison of the anti-carcinogenic effects of some probiotic bacteria and their postbiotics on colorectal cancer cells. J. Appl. Biol. Sci 2022;16(2):308-25.

Attia MS, Sharaf MH, Hashem AH, et al. Application of Rhizopus microsporus and Aspergillus oryzae to enhance the defense capacity of eggplant seedlings against Meloidogyne incognita. Not. Bot. Horti Agrobot. Cluj-Na 2023;51(3):13300. https://doi.org/10.15835/nbha51313300

Biyiklioglu Z, Bas H, Akkaya D, et al. Synthesis and biological evaluation of peripherally tetra?({6?[3?(dimethylamino) phenoxy] hexyl} oxy) substituted water?soluble phthalocyanines as cholinesterases inhibitors. Appl. Organomet. Chem. 2022;36(4):e6580. https://doi.org/10.1002/aoc.6580

Shah AM, Shakeel-U-Rehman, Hussain A, et al. Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India. Microb Pathog. 2017;110:93-9. https://doi.org/10.1016/j.micpath.2017.06.017 PMid: 28647504

Ismail M, Manickam E, Danial AM, et al. Chemical composition and antioxidant activity of Strobilanthes crispus leaf extract. J Nutr Biochem. 2000;11(11-12):536-42. https://doi.org/10.1016/S0955-2863(00)00108-X PMid: 11137889

Rajivgandhi GN, Ramachandran G, Li JL, et al. Molecular identification and structural detection of anti-cancer compound from marine Streptomyces akiyoshiensis GRG 6 (KY457710) against MCF-7 breast cancer cells. J. King Saud Univ. - Sci. 2020;32(8):3463-9. https://doi.org/10.1016/j.jksus.2020.10.008

Mahdjour S, Guardia JJ, Rodríguez-Serrano F, et al. Synthesis and antiproliferative activity of podocarpane and totarane derivatives. Eur J Med Chem. 2018;158:863-73. https://doi.org/10.1016/j.ejmech.2018.09.051 PMid: 30248657

Parthasarathy S, Thiribhuvanamala G, Subramanian K. et al. Volatile metabolites fingerprinting to discriminate the major post harvest diseases of mango caused by Colletotrichum gloeosporioides Penz. and Lasiodiplodia theobromae Pat. Ann. Phytomedicine 2017;6(2):55-62. https://doi.org/10.21276/ap.2017.6.2.4

Imran M, Iqbal A, Badshah SL, et al. Chemical and nutritional profiling of the seaweed Dictyota dichotoma and evaluation of its antioxidant, antimicrobial and hypoglycemic potentials. Mar Drugs. 2023;21(5):273. https://doi.org/10.3390/md21050273 PMid: 37233467

Jannu VG, Sanjenbam P, Kannabiran K. Preclinical evaluation and molecular docking of 2, 5–di–tert–butyl–1, 4–benzoquinone (DTBBQ) from Streptomyces sp. VITVSK1 as a potent antibacterial agent. Int J Bioinform Res Appl. 2015;11(2):142-52. https://doi.org/10.1504/IJBRA.2015.068089 PMid: 25786793

Quranayati Q, Iqhrammullah M, Saidi N, et al. Cytotoxicity and phytochemical profiles of Phyllanthus emblica stem barks with in silico drug-likeliness: Focusing on antidiabetic potentials. J Adv Pharm Technol Res. 2022;13(4):281-5. https://doi.org/10.4103/japtr.japtr_319_22 PMid: 36568059

Albratty M, Alhazmi HA, Meraya AM, et al. Spectral analysis and antibacterial activity of the bioactive principles of Sargassum tenerrimum J. Agardh collected from the Red sea, Jazan, Kingdom of Saudi Arabia. Braz J Biol. 2021;83:e249536. https://doi.org/10.1590/1519-6984.249536 PMid: 34669913.

Hira K, Farhat H, Sohail N, et al. Hepatoprotective activity against acetaminophen-induced liver dysfunction and GC-MS profiling of a brown algae Sargassum ilicifolium. Clin. Phytoscience 2021:7:40. https://doi.org/10.1186/s40816-021-00274-4

Bakir Boga O, Bugra Ortaakarsu A, Kad?rustaoglu B, et al. Phytochemical profiling, in vitro biological activities and in silico molecular docking studies of the crude extract of Crambe orientalis, an endemic plant in Turkey. Chem. Biodiv 2023:20(3): e202201142. https://doi.org/10.1002/cbdv.202201142 PMid: 36806590

Kikukawa H, Sakuradani E, Nishibaba Y, et al. Production of cis?11?eicosenoic acid by Mortierella fungi. J. Appl. Microbiol 2015;118(3):641-7. https://doi.org/10.1111/jam.12725 PMid: 25495454

Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol 2024;14(2):97-115. https://doi.org/10.1556/1886.2024.00035 PMid: 38648108

Abubacker MN, Devi PK. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence. Asian Pac J Trop Med. 2014;7(S1):S190-3. https://doi.org/10.1016/S1995-7645(14)60230-3 PMid: 25312119

Morteza-Semnani K, Saeedi M, Akbarzadeh M. Chemical composition and antimicrobial activity of the essential oil of Verbascum thapsus L. J. Essent. Oil-Bear. Plants. 2012;15(3):373-9. https://doi.org/10.1080/0972060X.2012.10644063

Mozdzan M, Szemraj J, Rysz J, et al. Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions. Int. J. Biochem. Cell Biol 2006:38(1):69-81. https://doi.org/10.1016/j.biocel.2005.07.004 PMid: 16107320

Kim BR, Kim HM, Jin CH, et al. Composition and antioxidant activities of volatile organic compounds in radiation-bred Coreopsis cultivars. Plants. 2020;9(6):717. https://doi.org/10.3390/plants9060717 PMid: 32512839

Hussain AI, Anwar F, Sherazi STH, et al. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008;108(3):986-95. https://doi.org/10.1016/j.foodchem.2007.12.010 PMid: 26065762

Gupta P, Banerjee A, Castillo A, et al. Novel phenolic compound from Southern Ocean microalgae Chlorella sp. PR-1 and its antibacterial activity. Gayana Bot. 2021;78(1):29-37. https://doi.org/10.4067/S0717-66432021000100029

Packiaraj R, Jeyakumar S, Ayyappan N, et al. Antimicrobial and cytotoxic activities of endophytic fungus Colletotrichum gloeosporioides isolated from endemic tree Cinnamomum malabatrum. Stud. Fungi 2016;1(1):104-13. https://doi.org/10.5943/sif/1/1/10

Chan P, Cheng JT, Tsao CW, et al. The in vitro antioxid ant activity of trilinolein and other lipid-related natural substances as measured by enhanced chemiluminescence. Life Sci. 1996;59(24):2067-73. https://doi.org/10.1016/S0024-3205(96)00560-7 PMid: 8950309

Modupalli N, Thangaraju S, Naik GM, et al. Assessment of physicochemical, functional, thermal, and phytochemical characteristics of refined rice bran wax. Food Chem. 2022;396(1):133737. https://doi.org/10.1016/j.foodchem.2022.133737 PMid: 35870241

Swetha K, Uma Maheswari M, Illanjiam S. Phyto-chemical profiling, antimicrobial and antioxidant activity of marine brown algae, Sargassum polycystum. Int. J. Ecol. Environ. Sci. 2024;50(4):623-9. https://doi.org/10.55863/ijees.2024.0205

Rani R, Sharma D, Chaturvedi M, et al. Phytochemical analysis, antibacterial and antioxidant activity of Calotropis procera and Calotropis gigantea. Nat. Prod. J. 2019;9(1):47-60. https://doi.org/10.2174/2210315508666180608081407

Naidoo CM, Naidoo Y, Dewir YH, et al. Phytochemical composition and antibacterial evaluation of Tabernaemontana ventricosa Hochst. ex A. DC. leaf, stem, and latex extracts. S. Afr. J. Bot. 2023;152:147-164. https://doi.org/10.1016/j.sajb.2022.11.026

Adibe MK, Ibok MG, Adeniyi-Akee MA, et al. Chemical compositions and antioxidant activity of leaf and stem essential oils of Bryophyllum pinnatum (lam.) Kurz. GSC Biol. Pharm. Sci. 2019;9(2):057-064. https://doi.org/10.30574/gscbps.2019.9.2.0184

Gyesi JN, Opoku R, Borquaye LS. Chemical composition, total phenolic content, and antioxidant activities of the essential oils of the leaves and fruit pulp of Annona muricata L. (Soursop) from Ghana. Biochem Res Int. 2019;2019(2):4164576. https://doi.org/10.1155/2019/4164576 PMid: 31565436

Goanar G, Tafesse G, Fereja WM. In vitro antibacterial activity of fruit pulp extracts of Tamarindus indica against Staphylococcus aureus and Klebsiella pneumoniae. BMC Complement Med Ther. 2024;24:127. https://doi.org/10.1186/s12906-024-04404-6 PMid: 38504277

Van Otterloo LM, Trent MS. Microbial Primer: Lipopolysaccharide–a remarkable component of the Gram-negative bacterial surface. Microbiology 2024;170(3):001439. https://doi.org/10.1099/mic.0.001439 PMid: 38450586

Sekhar NC, Jayasree T, Ubedulla S, et al. Evaluation of antinociceptive activity of aqueous extract of bark of Psidium guajava in albino rats and albino mice. J Clin Diagn Res. 2014;8(9):HF01-4. https://10.7860/JCDR/2014/8288.4811. PMid: 25386462.

Roy CK, Kamath JV, Asad M. Hepatoprotective activity of Psidium guajava Linn. leaf extract. Indian J Exp Biol. 2006;44(4):305-11. PMid: 16629373.

Sudha M, Gnanamani A, Deepa G, et al. In vivo studies on evaluation of potential toxicity of unspent tannins using albino rats (Rattusnorvegicus). Food Chem Toxicol. 2008;46(6):2288-95. https://doi.org/10.1016/j.fct.2008.03.012 PMid: 18439738

Manekeng HT, Mbaveng AT, Ntyam Mendo SA, et al. Evaluation of acute and subacute toxicities of Psidium guajava methanolic bark extract: a botanical with in vitro antiproliferative potential. Evid Based Complement Alternat Med. 2019;2019(1):8306986. https://doi.org/10.1155/2019/8306986 PMid: 31885665

Uboh FE, Okon IE, Ekong MB. Effect of aqueous extract of Psidium guajava leaves on liver enzymes, histological integrity and hematological indices in rats. Gastroenterology Res. 2010;3(1):32-38. https://doi.org/10.4021/gr2010.02.174w PMid: 27956982

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Electronic Journal of Biotechnology