Abstract
Viral vectors are among the main approaches currently used in studies for executing gene delivery to target cells. During the past decades of active studies in gene therapy, including viruses, adenoviruses (Ads), lentiviruses (LVs), and adeno-associated viruses (AAVs), have received the most attention among the biological approaches where potentially successful outcomes are recorded for numerous genetic conditions. The success of delivery methods, however, remains unsatisfactory. Using some additives that can improve transgene expression, transfection efficiency, viral particle production, and transduction efficiency is considered as a solution to overcoming the limitations of gene delivery approaches. These additives include caffeine, histone deacetylase (HDAC) inhibitors like sodium butyrate and valproic acid, and polycationic agents like polybrene and protamine sulfate. In this review article, we present an overview of viral vector-mediated retinal gene therapies and the application of some enhancers used to improve the outcomes of gene delivery. Three routes of administrating viral vectors into ocular compartments are employed for the delivery of target genes into impacted cells, and some additives have shown enhanced efficiency of gene delivery in retinal cells. The current study places a special focus on the viral vectors and enhancers used for gene therapies of inherited retinal diseases.
References
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Molecular Therapy 2021;29(2):464-88. https://doi.org/10.1016/j.ymthe.2020.12.007 PMid: 33309881
Anguela XM, High KA. Entering the Modern Era of gene therapy. Annual Review of Medicine 2019;70:273-88. https://doi.org/10.1146/annurev-med-012017-043332 PMid: 30477394
Bulcha JT, Wang Y, Ma H, et al. Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy 2021;6:53. https://doi.org/10.1038/s41392-021-00487-6 PMid: 33558455
Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age. Science 2018;359(6372):eaan4672. https://doi.org/10.1126/science.aan4672 PMid: 29326244
Moini J, Badolato C, Ahangari R. Gene Therapy. In: Moini J, Badolato C, Ahangari R, editors. Epidemiology of Endocrine Tumors: Elsevier; 2020. p. 505-16. https://doi.org/10.1016/B978-0-12-822187-7.00007-4
Liu F, Huang L. Development of non-viral vectors for systemic gene delivery. Journal of Controlled Release. 2002;78(1):259-66. https://doi.org/10.1016/S0168-3659(01)00494-1 PMid: 11772466
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Molecular Therapy 2016;24(3):430-46. https://doi.org/10.1038/mt.2016.10 PMid: 26755333
Zhang S, Xu Y, Wang B, et al. Cationic compounds used in lipoplexes and polyplexes for gene delivery. Journal of Controlled Release. 2004;100(2):165-80. https://doi.org/10.1016/j.jconrel.2004.08.019 PMid: 15544865
Cross D, Burmester JK. Gene Therapy for Cancer Treatment: Past, Present and Future. Clinical Medicine & Research. 2006;4(3):218-27. https://doi.org/10.3121/cmr.4.3.218 PMid: 16988102
Yu M, Poeschla E, Wong-Staal F. Progress towards gene therapy for HIV infection. Gene Ther. 1994;1(1):13-26. PMid: 7584055
Najafi S, Tan SC, Aghamiri S, et al. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomedicine & Pharmacotherapy. 2022;148:112743. https://doi.org/10.1016/j.biopha.2022.112743 PMid: 35228065
Ferreira GN, Monteiro GA, Prazeres DM, et al. Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Trends in Biotechnology. 2000;18(9):380-8. https://doi.org/10.1016/S0167-7799(00)01475-X PMid: 10942962
Knipe JM, Peters JT, Peppas NA. Theranostic agents for intracellular gene delivery with spatiotemporal imaging. Nano Today. 2013;8(1):21-38. https://doi.org/10.1016/j.nantod.2012.12.004 PMid: 23606894
Anderson WF. Human gene therapy. Science. 1992;256(5058):808-13. https://doi.org/10.1126/science.256.5058.808 PMid: 1589762
Terheggen H, Lowenthal A, Lavinha F, et al. Unsuccessful trial of gene replacement in arginase deficiency. European Journal of Pediatrics. 1975;119:1-3. https://doi.org/10.1007/BF00464689 PMid: 164740
Najafi S, Mortezaee K. Modifying CAR-T cells with anti-checkpoints in cancer immunotherapy: A focus on anti PD-1/PD-L1 antibodies. Life Sciences. 2024;338:122387. https://doi.org/10.1016/j.lfs.2023.122387 PMid: 38154609
Misra S. Human gene therapy: a brief overview of the genetic revolution. J Assoc Physicians India. 2013;61(2):127-33. PMid: 24471251
Ginter E. Gene therapy of hereditary diseases. Voprosy meditsinskoi khimii. 2000;46(3):265-78. [Article in Russian] PMid: 11033886.
Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioengineering & Translational Medicine. 2022;7(1):e10258. https://doi.org/10.1002/btm2.10258 PMid: 35079633
Chancellor D, Barrett D, Nguyen-Jatkoe L, et al. The state of cell and gene therapy in 2023. Molecular Therapy. 2023;31(12):3376-88. https://doi.org/10.1016/j.ymthe.2023.11.001 PMid: 37927037
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. International Journal of Pharmaceutics. 2014;459(1):70-83. https://doi.org/10.1016/j.ijpharm.2013.11.041 PMid: 24286924
Nam HY, Park JH, Kim K, et al. Lipid-based emulsion system as non-viral gene carriers. Archives of Pharmacal Research. 2009;32(5):639-46. https://doi.org/10.1007/s12272-009-1500-y PMid: 19471876
Nagasaki T, Shinkai S. The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2007;58(3):205-19. https://doi.org/10.1007/s10847-007-9303-6
Ropert C. Liposomes as a gene delivery system. Braz J Med Biol Res 1999;32(2):163-9. https://doi.org/10.1590/S0100-879X1999000200004 PMid: 10347751
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Advanced Biomedical Research. 2012;1(2):27. https://doi.org/10.4103/2277-9175.98152 PMid: 23210086
Somia N, Verma IM. Gene therapy: trials and tribulations. Nature Reviews Genetics. 2000;1(2):91-9. https://doi.org/10.1038/35038533 PMid: 11253666
Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017;15(3):369-75. https://doi.org/10.1590/s1679-45082017rb4024 PMid: 29091160
Li X, Le Y, Zhang Z, et al. Viral vector-based gene therapy. International Journal of Molecular Sciences. 2023;24(9):7736. https://doi.org/10.3390/ijms24097736 PMid: 37175441
Najafi S, Majidpoor J, Mortezaee K. The impact of oncolytic adenoviral therapy on the therapeutic efficacy of PD-1/PD-L1 blockade. Biomedicine & Pharmacotherapy. 2023;161:114436. https://doi.org/10.1016/j.biopha.2023.114436 PMid: 36841031
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics. 2003;4(5):346-58. https://doi.org/10.1038/nrg1066 PMid: 12728277
Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: From virology to transgene expression. British Journal of Pharmacology. 2009;157(2):153-65. https://doi.org/10.1038/bjp.2008.349 PMid: 18776913
Goswami R, Subramanian G, Silayeva L, et al. Gene Therapy Leaves a Vicious Cycle. Frontiers in Oncology. 2019;9:297. https://doi.org/10.3389/fonc.2019.00297 PMid: 31069169
Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nature Reviews Genetics. 2007;8(8):573-87. https://doi.org/10.1038/nrg2141 PMid: 17607305
Boulaiz H, Marchal JA, Prados J, et al. Non-viral and viral vectors for gene therapy. Cellular and molecular biology (Noisy-le-Grand, France). 2005;51(1):3-22.
Ghosh S, Brown AM, Jenkins C, et al. Viral Vector Systems for Gene Therapy: A Comprehensive Literature Review of Progress and Biosafety Challenges. Applied Biosafety. 2020;25(1):7-18. https://doi.org/10.1177/1535676019899502 PMid: 36033383
Park S-Y, Kim K-H, Kim S, et al. BMP-2 Gene Delivery-Based Bone Regeneration in Dentistry. Pharmaceutics. 2019;11(8):393. https://doi.org/10.3390/pharmaceutics11080393 PMid: 31387267
Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17(3):295-304. https://doi.org/10.1038/gt.2009.148 PMid: 19907498
Davé UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science. 2004;303(5656):333. https://doi.org/10.1126/science.1091667 PMid: 14726584
Kofron MD, Laurencin CT. Bone tissue engineering by gene delivery. Advanced drug delivery reviews. 2006;58(4):555-76. https://doi.org/10.1016/j.addr.2006.03.008 PMid: 16790291
Ferber D. Gene therapy. Safer and virus-free? Science. 2001;294(5547):1638-42. https://doi.org/10.1126/science.294.5547.1638 PMid: 11721029
Lundstrom K. Viral Vectors in Gene Therapy. Diseases. 2018;6(2):42. https://doi.org/10.3390/diseases6020042 PMid: 29883422
Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: Therapeutics, clinical trials and end points-A review. Clinical & Experimental Ophthalmology. 2021;49(3):270-88. https://doi.org/10.1111/ceo.13917 PMid: 33686777
Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harbor perspectives in medicine. 2014;5(2):a017111. https://doi.org/10.1101/cshperspect.a017111 PMid: 25324231
Nuzbrokh Y, Ragi SD, Tsang SH. Gene therapy for inherited retinal diseases. Annals of Translational Medicine. 2021;9(15):1278. https://doi.org/10.21037/atm-20-4726 PMid: 34532415
Thompson DA, Iannaccone A, Ali RR, et al. Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium. Translational Vision Science & Technology. 2020;9(7):2. https://doi.org/10.1167/tvst.9.7.2 PMid: 32832209
McClements ME, MacLaren RE. Gene therapy for retinal disease. Translational Research. 2013;161(4):241-54. https://doi.org/10.1016/j.trsl.2012.12.007 PMid: 23305707
Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and Subretinal Injections of AAV Using Transscleral Microneedles for Retinal Gene Delivery in Nonhuman Primates. Molecular Therapy Methods & Clinical Development. 2020;16:179-91. https://doi.org/10.1016/j.omtm.2020.01.002 PMid: 32055646
Ziccardi L, Cordeddu V, Gaddini L, et al. Gene Therapy in Retinal Dystrophies. International Journal of Molecular Sciences. 2019;20(22):5722. https://doi.org/10.3390/ijms20225722 PMid: 31739639
del Amo EM, Rimpelä A-K, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Progress in Retinal and Eye Research. 2017;57:134-85. https://doi.org/10.1016/j.preteyeres.2016.12.001 PMid: 28028001
Pitkänen L, Ruponen M, Nieminen J, et al. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharmaceutical Research. 2003;20(4):576-83. https://doi.org/10.1023/A:1023238530504 PMid: 12739764
Peeters L, Sanders NN, Braeckmans K, et al. Vitreous: A Barrier to Nonviral Ocular Gene Therapy. Investigative Ophthalmology & Visual Science. 2005;46(10):3553-61. https://doi.org/10.1167/iovs.05-0165 PMid: 16186333
Ail D, Malki H, Zin EA, et al. Adeno-Associated Virus (AAV) - Based gene therapies for retinal diseases: Where are we? The Application of Clinical Genetics. 2023;16:111-30. https://doi.org/10.2147/TACG.S383453 PMid: 37274131
Ali RR, Reichel MB, Thrasher AJ, et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Human Molecular Genetics. 1996;5(5):591-4. https://doi.org/10.1093/hmg/5.5.591 PMid: 8733124
Ong T, Pennesi ME, Birch DG, et al. Adeno-associated viral gene therapy for inherited retinal disease. Pharmaceutical Research. 2019;36:34. https://doi.org/10.1007/s11095-018-2564-5 PMid: 30617669
Nieuwenhuis B, Laperrousaz E, Tribble JR, et al. Improving Adeno-Associated Viral (AAV) vector-mediated transgene expression in retinal ganglion cells: Comparison of five promoters. Gene Ther. 2023;30(6):503-19. https://doi.org/10.1038/s41434-022-00380-z PMid: 36635457
Chiu W, Lin T-Y, Chang Y-C, et al. An update on gene therapy for inherited retinal dystrophy: Experience in Leber Congenital Amaurosis clinical trials. International Journal of Molecular Sciences. 2021;22(9):4534. https://doi.org/10.3390/ijms22094534 PMid: 33926102
Amato A, Arrigo A, Aragona E, et al. Gene therapy in inherited retinal diseases: An update on current state of the art. Frontiers in Medicine. 2021;8:750586. https://doi.org/10.3389/fmed.2021.750586 PMid: 34722588
Shamshad A, Kang C, Jenny LA, et al. Translatability barriers between preclinical and clinical trials of AAV gene therapy in inherited retinal diseases. Vision Research. 2023;210:108258. https://doi.org/10.1016/j.visres.2023.108258 PMid: 37244011
Hasler PW, Brandi Bloch S, Villumsen J, et al. Safety study of 38503 intravitreal ranibizumab injections performed mainly by physicians in training and nurses in a hospital setting. Acta Ophthalmologica. 2015;93(2):122-5. https://doi.org/10.1111/aos.12589 PMid: 25403735
Rolling F. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther. 2004;11(1):S26-S32. https://doi.org/10.1038/sj.gt.3302366 PMid: 15454954
Darrow JJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discovery Today. 2019;24(4):949-54. https://doi.org/10.1016/j.drudis.2019.01.019 PMid: 30711576
Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. The Lancet. 2017;390(10097):849-60. https://doi.org/10.1016/S0140-6736(17)31868-8 PMid: 28712537
Keeler AM, Flotte TR. Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where are we, and how did we get here? Annual Review of Virology. 2019;6:601-21. https://doi.org/10.1146/annurev-virology-092818-015530 PMid: 31283441
Ferrari S, Geddes DM, Alton EW. Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Advanced Drug Delivery Reviews. 2002;54(11):1373-93. https://doi.org/10.1016/S0169-409X(02)00145-X PMid: 12458150
Chira S, Jackson CS, Oprea I, et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget. 2015;6(31):30675-703. https://doi.org/10.18632/oncotarget.5169 PMid: 26362400
Ellis BL, Potts PR, Porteus MH. Creating higher titer lentivirus with caffeine. Human Gene Therapy. 2011;22(1):93-100. https://doi.org/10.1089/hum.2010.068 PMid: 20626321
Kaygisiz K, Synatschke CV. Materials promoting viral gene delivery. Biomaterials Science. 2020;8(22):6113-56. https://doi.org/10.1039/D0BM01367F PMid: 33025967
Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opinion on Drug Delivery. 2013;10(2):215-28. https://doi.org/10.1517/17425247.2013.744964 PMid: 23252504
Pham PL, Kamen A, Durocher Y. Large-scale transfection of mammalian cells for the fast production of recombinant protein. Molecular Biotechnology. 2006;34(2):225-37. https://doi.org/10.1385/MB:34:2:225 PMid: 17172668
Reed SE, Staley EM, Mayginnes JP, et al. Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. Journal of Virological Methods. 2006;138(1-2):85-98. https://doi.org/10.1016/j.jviromet.2006.07.024 PMid: 16950522
Segura MM, Garnier A, Durocher Y, et al. Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnology and Bioengineering. 2007;98(4):789-99. https://doi.org/10.1002/bit.21467 PMid: 17461423
Saifullah S, Ali I, Kawish M, et al. Surface functionalized magnetic nanoparticles for targeted cancer therapy and diagnosis. In: Shah MR, Imran M, Ullah S, editors. Metal Nanoparticles for Drug Delivery and Diagnostic Applications: Elsevier; 2020. p. 215-36. https://doi.org/10.1016/B978-0-12-816960-5.00012-4
Akinc A, Thomas M, Klibanov AM, et al. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. The Journal of Gene Medicine. 2005;7(5):657-63. https://doi.org/10.1002/jgm.696 PMid: 15543529
Liu S, Huang W, Jin M-J, et al. Inhibition of murine breast cancer growth and metastasis by survivin-targeted siRNA using disulfide cross-linked linear PEI. European Journal of Pharmaceutical Sciences. 2016;82:171-82. https://doi.org/10.1016/j.ejps.2015.11.009 PMid: 26554721
Kunath K, von Harpe A, Fischer D, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. Journal of Controlled Release. 2003;89(1):113-25. https://doi.org/10.1016/S0168-3659(03)00076-2 PMid: 12695067
Brunot C, Ponsonnet L, Lagneau C, et al. Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials. 2007;28(4):632-40. https://doi.org/10.1016/j.biomaterials.2006.09.026 PMid: 17049374
Gomes dos Santos AL, Bochot A, Tsapis N, et al. Oligonucleotide-polyethylenimine complexes targeting retinal cells: structural analysis and application to anti-TGF?-2 therapy. Pharmaceutical Research. 2006;23:770-81. https://doi.org/10.1007/s11095-006-9748-0 PMid: 16572352
Vancha AR, Govindaraju S, Parsa KVL, et al. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotechnology. 2004;4(1):23. https://doi.org/10.1186/1472-6750-4-23 PMid: 15485583
Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences. 1995;92(16):7297-301. https://doi.org/10.1073/pnas.92.16.7297 PMid: 7638184
Tang Y, Garson K, Li L, Vanderhyden BC. Optimization of lentiviral vector production using polyethylenimine-mediated transfection. Oncology letters. 2015;9(1):55-62. https://doi.org/10.3892/ol.2014.2684 PMid: 25435933
Rodier JT, Tripathi R, Fink MK, et al. Linear Polyethylenimine-DNA Nanoconstruct for Corneal Gene Delivery. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association for Ocular Pharmacology and Therapeutics. 2019;35(1):23-31. https://doi.org/10.1089/jop.2018.0024 PMid: 30699061
Horbinski C, Stachowiak MK, Higgins D, et al. Polyethyleneimine-mediated transfection of cultured postmitotic neurons from rat sympathetic ganglia and adult human retina. BMC Neuroscience. 2001;2:2. https://doi.org/10.1186/1471-2202-2-2 PMid: 11231879
Peng C-H, Cherng J-Y, Chiou G-Y, et al. Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium. Biomaterials. 2011;32(34):9077-88. https://doi.org/10.1016/j.biomaterials.2011.08.008 PMid: 21890195
Fricano-Kugler CJ, Williams MR, Salinaro JR, et al. Designing, packaging, and delivery of high titer CRISPR retro and lentiviruses via stereotaxic injection. JoVE. 2016;111:e53783. https://doi.org/10.3791/53783 PMid: 27285851
Rodrigues Goulart H, Arthuso Fdos S, Capone MV, et al. Enhancement of human prolactin synthesis by sodium butyrate addition to serum-free CHO cell culture. Journal of Biomedicine & Biotechnology. 2010;2010(1):405872. https://doi.org/10.1155/2010/405872 PMid: 20625486
Taura K, Yamamoto Y, Nakajima A, et al. Impact of novel histone deacetylase inhibitors, CHAP31 and FR901228 (FK228), on adenovirus-mediated transgene expression. The Journal of Gene Medicine. 2004;6(5):526-36. https://doi.org/10.1002/jgm.546 PMid: 15133763
Okada T, Uchibori R, Iwata-Okada M, et al. A histone deacetylase inhibitor enhances recombinant adeno-associated virus-mediated gene expression in tumor cells. Molecular Therapy. 2006;13(4):738-46. https://doi.org/10.1016/j.ymthe.2005.11.010 PMid: 16387551
O'Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology. 2018;9:402. https://doi.org/10.3389/fendo.2018.00402 PMid: 30123182
Rezaee D, Saadatpour F, Akbari N, et al. The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases. Ageing Research Reviews. 2023;92:102090. https://doi.org/10.1016/j.arr.2023.102090 PMid: 37832609
Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. International Journal of Molecular Sciences. 2016;17(10):1712. https://doi.org/10.3390/ijms17101712 PMid: 27754357
Fattahi M, Rezaee D, Fakhari F, et al. microRNA-184 in the landscape of human malignancies: a review to roles and clinical significance. Cell Death Discovery. 2023;9(1):423. https://doi.org/10.1038/s41420-023-01718-1 PMid: 38001121
Fischer S, Paul AJ, Wagner A, et al. miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnology and Bioengineering. 2015;112(10):2142-53. https://doi.org/10.1002/bit.25626 PMid: 25997799
Joglekar AV, Stein L, Ho M, et al. Dissecting the mechanism of histone deacetylase inhibitors to enhance the activity of zinc finger nucleases delivered by integrase-defective lentiviral vectors. Human Gene Therapy. 2014;25(7):599-608. https://doi.org/10.1089/hum.2013.211 PMid: 24568341
Cervera L, Fuenmayor J, González-Domínguez I, et al. Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures. Applied Microbiology and Biotechnology. 2015;99(23):9935-49. https://doi.org/10.1007/s00253-015-6842-4 PMid: 26278533
Cude K, Wang Y, Choi HJ, et al. Regulation of the G2-M cell cycle progression by the ERK5-NF?B signaling pathway. The Journal of Cell Biology. 2007;177(2):253-64. https://doi.org/10.1083/jcb.200609166 PMid: 17452529
Li D, Li P, Li G, et al. The effect of nocodazole on the transfection efficiency of lipid-bilayer coated gold nanoparticles. Biomaterials. 2009;30(7):1382-8. https://doi.org/10.1016/j.biomaterials.2008.11.037 PMid: 19091395
Tait AS, Brown CJ, Galbraith DJ, et al. Transient production of recombinant proteins by Chinese hamster ovary cells using polyethyleneimine/DNA complexes in combination with microtubule disrupting anti?mitotic agents. Biotechnology and Bioengineering. 2004;88(6):707-21. https://doi.org/10.1002/bit.20265 PMid: 15532040
Palermo DP, DeGraaf ME, Marotti KR, et al. Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. Journal of Biotechnology. 1991;19(1):35-47. https://doi.org/10.1016/0168-1656(91)90073-5 PMid: 1369310
Mimura Y, Lund J, Church S, et al. Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. Journal of Immunological Methods. 2001;247(1):205-16. https://doi.org/10.1016/S0022-1759(00)00308-2 PMid: 11150551
Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Molecular and Cellular Biochemistry. 1981;42(2):65-82. https://doi.org/10.1007/BF00222695 PMid: 6174854
Sakoda T, Kasahara N, Hamamori Y, et al. A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. Journal of Molecular and Cellular Cardiology. 1999;31(11):2037-47. https://doi.org/10.1006/jmcc.1999.1035 PMid: 10591030
Sena-Esteves M, Tebbets JC, Steffens S, et al. Optimized large-scale production of high titer lentivirus vector pseudotypes. Journal of Virological Methods. 2004;122(2):131-9. https://doi.org/10.1016/j.jviromet.2004.08.017 PMid: 15542136
Karolewski BA, Watson DJ, Parente MK, et al. Comparison of transfection conditions for a lentivirus vector produced in large volumes. Human Gene Therapy. 2003;14(14):1287-96. https://doi.org/10.1089/104303403322319372 PMid: 14503964
Soneoka Y, Cannon PM, Ramsdale EE, et al. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Research. 1995;23(4):628-33. https://doi.org/10.1093/nar/23.4.628 PMid: 7899083
Ansorge S, Lanthier S, Transfiguracion J, et al. Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. The Journal of Gene Medicine. 2009;11(10):868-76. https://doi.org/10.1002/jgm.1370 PMid: 19618482
Pelascini LP, Janssen JM, Gonçalves MA. Histone deacetylase inhibition activates transgene expression from integration-defective lentiviral vectors in dividing and non-dividing cells. Human Gene Therapy. 2013;24(1):78-96. https://doi.org/10.1089/hum.2012.069 PMid: 23140481
Davis HE, Morgan JR, Yarmush ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophysical Chemistry. 2002;97(2-3):159-72. https://doi.org/10.1016/S0301-4622(02)00057-1 PMid: 12050007
Denning W, Das S, Guo S, et al. Optimization of the transductional efficiency of lentiviral vectors: Effect of sera and polycations. Molecular Biotechnology. 2013;53(3):308-14. https://doi.org/10.1007/s12033-012-9528-5 PMid: 22407723
Jacobsen F, Hirsch T, Mittler D, et al. Polybrene improves transfection efficacy of recombinant replication?deficient adenovirus in cutaneous cells and burned skin. The Journal of Gene Medicine. 2006;8(2):138-46. https://doi.org/10.1002/jgm.843 PMid: 16288494
Nanba D, Matsushita N, Toki F, et al. Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector. Stem Cell Research & Therapy. 2013;4(5):1-12. https://doi.org/10.1186/scrt338 PMid: 24406242
Kim B-J, Kim K-J, Kim Y-H, et al. Efficient enhancement of lentiviral transduction efficiency in murine spermatogonial stem cells. Molecules and Cells. 2012;33:449-55. https://doi.org/10.1007/s10059-012-2167-7 PMid: 22526390
Jang J, Lee J, Kim S-T, et al. Polycation-mediated enhancement of retroviral transduction efficiency depends on target cell types and pseudotyped Env proteins: Implication for gene transfer into neural stem cells. Neurochemistry International. 2012;60(8):846-51. https://doi.org/10.1016/j.neuint.2012.02.033 PMid: 22421532
Zhao C, Wu N, Deng F, et al. Adenovirus-mediated gene transfer in mesenchymal stem cells can be significantly enhanced by the cationic polymer polybrene. PLoS ONE. 2014;9(3):e92908. https://doi.org/10.1371/journal.pone.0092908 PMid: 24658746
Lin P, Correa D, Lin Y, et al. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction. PloS ONE. 2011;6(8):e23891. https://doi.org/10.1371/journal.pone.0023891 PMid: 21887340
Han M, Yu D, Song Q, et al. Polybrene: Observations on cochlear hair cell necrosis and minimal lentiviral transduction of cochlear hair cells. Neuroscience Letters. 2015;600:164-70. https://doi.org/10.1016/j.neulet.2015.06.011 PMid: 26071903
Cehajic-Kapetanovic J, Le Goff MM, et al. Glycosidic enzymes enhance retinal transduction following intravitreal delivery of AAV2. Mol Vis. 2011;17:1771-83. PMid: 21750604
Miyoshi H, Takahashi M, Gage FH, et al. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proceedings of the National Academy of Sciences. 1997;94(19):10319-23. https://doi.org/10.1073/pnas.94.19.10319 PMid: 9294208
Duisit G, Conrath H, Saleun S, et al. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Molecular Therapy. 2002;6(4):446-54. https://doi.org/10.1006/mthe.2002.0690 PMid: 12377185
Hashimoto T, Gibbs D, Lillo C, et al. Lentiviral gene replacement therapy of retinas in a mouse model for Usher syndrome type 1B. Gene Ther. 2007;14(7):584-94. https://doi.org/10.1038/sj.gt.3302897 PMid: 17268537
Alsing S, Doktor TK, Askou AL, et al. VEGFA-targeting miR-agshRNAs combine efficacy with specificity and safety for retinal gene therapy. Molecular Therapy Nucleic Acids. 2022;28:58-76. https://doi.org/10.1016/j.omtn.2022.02.019 PMid: 35356684
Cereso N, Pequignot MO, Robert L, et al. Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient. Molecular Therapy - Methods & Clinical Development. 2014;1:14011. https://doi.org/10.1038/mtm.2014.11 PMid: 26015956
Peng C-H, Woung L-C, Lu K-H, et al. Acoustic waves improves retroviral transduction in human retinal stem cells. Journal of the Chinese Medical Association. 2018;81(9):830-6. https://doi.org/10.1016/j.jcma.2018.05.002 PMid: 29941298
Barcia RN, Dana MR, Kazlauskas A. Corneal graft rejection is accompanied by apoptosis of the endothelium and is prevented by gene therapy with Bcl-xL. American Journal of Transplantation. 2007;7(9):2082-9. https://doi.org/10.1111/j.1600-6143.2007.01897.x PMid: 17614980
Browning DJ. Pharmacology of chloroquine and hydroxychloroquine. In: Hydroxychloroquine and Chloroquine Retinopathy. Springer, New York, NY. 2014, pp. 35-63. https://doi.org/10.1007/978-1-4939-0597-3_2
Lei Z-N, Wu Z-X, Dong S, et al. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacology & Therapeutics. 2020;216:107672. https://doi.org/10.1016/j.pharmthera.2020.107672 PMid: 32910933
Chandler LC, Barnard AR, Caddy SL, et al. Enhancement of adeno-associated virus-mediated gene therapy using hydroxychloroquine in murine and human tissues. Mol Ther Methods Clin Dev. 2019;14:77-89. https://doi.org/10.1016/j.omtm.2019.05.012 PMid: 31309129
Rivankar S. An overview of doxorubicin formulations in cancer therapy. Journal of Cancer Research and Therapeutics. 2014;10(4):853-8. https://doi.org/10.4103/0973-1482.139267 PMid: 25579518
Solomon R, Gabizon AA. Clinical pharmacology of liposomal anthracyclines: Focus on pegylated liposomal doxorubicin. Clinical Lymphoma and Myeloma. 2008;8(1):21-32. https://doi.org/10.3816/CLM.2008.n.001 PMid: 18501085
Yan Z, Zak R, Zhang Y, et al. Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. Journal of Virology. 2004;78(6):2863-74. https://doi.org/10.1128/JVI.78.6.2863-2874.2004 PMid: 14990705
Griesenbach U, Meng C, Farley R, et al. The role of doxorubicin in non-viral gene transfer in the lung. Biomaterials. 2009;30(10):1971-7. https://doi.org/10.1016/j.biomaterials.2008.12.037 PMid: 19152975
Zhang T, Hu J, Ding W, et al. Doxorubicin augments rAAV-2 transduction in rat neuronal cells. Neurochemistry international. 2009;55(7):521-8. https://doi.org/10.1016/j.neuint.2009.05.005 PMid: 19450628
Gong H, Yuan N, Shen Z, et al. Transduction catalysis: Doxorubicin amplifies rAAV-mediated gene expression in the cortex of higher-order vertebrates. iScience. 2021;24(6):102685. https://doi.org/10.1016/j.isci.2021.102685 PMid: 34195565
Cui S, Ganjawala HT, Abrams WG, et al. Effect of proteasome inhibitors on the AAV-mediated transduction efficiency in retinal bipolar cells. Current Gene Therapy. 2019;19(6):404-12. https://doi.org/10.2174/1566523220666200211111326 PMid: 32072884
Cehajic-Kapetanovic J, Milosavljevic N, Bedford RA, et al. Efficacy and safety of glycosidic enzymes for improved gene delivery to the retina following intravitreal injection in mice. Mol Ther Methods Clin Dev. 2018;9:192-202. https://doi.org/10.1016/j.omtm.2017.12.002 PMid: 29766027
Ho YK, Zhou LH, Tam KC, et al. Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of ?-tubulin deactylase. Nucleic Acids Res. 2017;45(6):e38. https://doi.org/10.1093/nar/gkw1143 PMid: 27899629
Ho Y, Too H. Development of a laboratory scalable process for enhancing lentivirus production by transient transfection of HEK293 adherent cultures. Gene Therapy. 2020;27(10):482-94. https://doi.org/10.1038/s41434-020-0152-x PMid: 32341483
Adamson-Small L, Potter M, Byrne BJ, et al. Sodium chloride enhances recombinant adeno-associated virus production in a serum-free suspension manufacturing platform using the herpes simplex virus system. Hum Gene Ther Methods. 2017;28(1):1-14. https://doi.org/10.1089/hgtb.2016.151 PMid: 28117600
Yu C, Trivedi PD, Chaudhuri P, et al. NaCl and KCl mediate log increase in AAV vector particles and infectious titers in a specific/timely manner with the HSV platform. Molecular Therapy - Methods & Clinical Development. 2021;21:1-13. https://doi.org/10.1016/j.omtm.2021.02.015 PMid: 33768125
Pernod G, Fish R, Liu JW, et al. Increasing lentiviral vector titer using inhibitors of protein kinase R. BioTechniques. 2004;36(4):576-80. https://doi.org/10.2144/04364BM02 PMid: 15088373
Lee J-Y, Lee H-H. A new chemical complex can rapidly concentrate lentivirus and significantly enhance gene transduction. Cytotechnology. 2018;70(1):193-201. https://doi.org/10.1007/s10616-017-0133-0 PMid: 28884364
Hamada A, Kita Y, Murakami K, et al. Enhancement of transduction efficiency using Adeno-associated viral vectors by chemical pretreatment to mice bladder urothelium. Journal of Virological Methods. 2020;279:113854. https://doi.org/10.1016/j.jviromet.2020.113854 PMid: 32198026
Ramesh N, Memarzadeh B, Ge Y, et al. Identification of pretreatment agents to enhance adenovirus infection of bladder epithelium. Molecular Therapy. 2004;10(4):697-705. https://doi.org/10.1016/j.ymthe.2004.07.002 PMid: 15451454
Jaalouk D, Crosato M, Brodt P, et al. Inhibition of histone deacetylation in 293GPG packaging cell line improves the production of self-inactivating MLV-derived retroviral vectors. Virology Journal. 2006;3:27. https://doi.org/10.1186/1743-422X-3-27 PMid: 16603064
Paszkiet BJ, Zhang J, Matukonis M, et al. Histone deacetylation inhibitors enhance lentiviral vector production and infectivity. Molecular Therapy. 2002;5(5 Supp):S308. https://doi.org/10.1016/S1525-0016(16)43774-3
Höfig I, Atkinson MJ, Mall S, et al. Poloxamer synperonic F108 improves cellular transduction with lentiviral vectors. The Journal of Gene Medicine. 2012;14(8):549-60. https://doi.org/10.1002/jgm.2653 PMid: 22887595
Schott JW, León-Rico D, Ferreira CB, et al. Enhancing lentiviral and alpharetroviral transduction of human hematopoietic stem cells for clinical application. Molecular Therapy - Methods & Clinical Development. 2019;14:134-47. https://doi.org/10.1016/j.omtm.2019.05.015 PMid: 31338385
Nathwani AC, Cochrane M, McIntosh J, et al. Enhancing transduction of the liver by adeno-associated viral vectors. Gene Therapy. 2009;16(1):60-9. https://doi.org/10.1038/gt.2008.137 PMid: 18701909
Aktas Z, Rao H, Slauson SR, et al. Proteasome inhibition increases the efficiency of lentiviral vector-mediated transduction of trabecular meshwork. Investigative Ophthalmology & Visual Science. 2018;59(1):298-310. https://doi.org/10.1167/iovs.17-22074 PMid: 29340644

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2024 Electronic Journal of Biotechnology