Virtual screening and experimental analysis of caspase-7 inhibitors as candidates for extending the lifespan of CHO cells

Graphical abstract

Virtual screening and experimental analysis of caspase-7 inhibitors as candidates for extending the lifespan of CHO cells
PDF
HTML

Keywords

Anti-apoptotic
Apoptosis inhibition
Caspase-7
Caspase-7 inhibitors
CHO cells
Lifespan
Recombinant proteins
Risperidone
Virtual screening

How to Cite

1.
Kafia S, Najafi S, Mahnam K, Farivar S, Ranjbari J. Virtual screening and experimental analysis of caspase-7 inhibitors as candidates for extending the lifespan of CHO cells. Electron. J. Biotechnol. [Internet]. 2024 Sep. 15 [cited 2026 Jan. 26];71:28-36. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2394

Abstract

Background: Chinese hamster ovarian (CHO) cells are widely employed in biotechnology for the production of recombinant proteins. Extending the life span of CHO cells and inhibiting the loss of producing cell population through the inhibition of apoptosis can benefit the productivity of those cells. In this study, we aimed to screen and evaluate the impact of some caspase-7 inhibitor candidates on the lifespan of CHO cells.

Results: Through virtual screening and molecular docking, risperidone was screened and selected as a potential inhibitor of caspase-7 in CHO cells. The results of MTT assay revealed that the cytotoxicity of risperidone at all concentrations was lower than 50%, and thus it can be suggested as a safe treatment for CHO cells. Annexin V apoptosis and flow cytometry assays revealed that risperidone at 1, 25, and 50 µM concentrations inhibited apoptosis 72 h post-treatment through caspase-7 inhibition. Although gene expression analysis through qRT-PCR demonstrates that risperidone did not affect caspase-7 gene expression.

Conclusions: This bioinformatics and experimental study suggests risperidone as a caspase-7 inhibitor with the potential to extend the lifespan of CHO cells and offers possible opportunities in biotechnology.

https://doi.org/10.1016/j.ejbt.2024.04.007
PDF
HTML

References

Pham PV. Medical Biotechnology: Techniques and Applications. In: Barh D, Azevedo V, editors. Omics Technologies and Bio-Engineering. Academic Press; 2018. p. 449-469. https://doi.org/10.1016/B978-0-12-804659-3.00019-1 PMid: 29193228

Lagassé HAD, Alexaki A, Simhadri VL, et al. Recent advances in (therapeutic protein) drug development. F1000Res. 2017;6:113. https://doi.org/10.12688/f1000research.9970.1 PMid: 28232867

Gupta V, Sengupta M, Prakash J, et al. Production of recombinant pharmaceutical proteins. In: Gupta V, Sengupta M, Prakash J, et al. editors. Basic and Applied Aspects of Biotechnology. Singapore: Springer Singapore; 2017, p. 77-101. https://doi.org/10.1007/978-981-10-0875-7_4

Nosaki S, Miura K. Transient expression of recombinant proteins in plants. Methods Enzymol. 2021;660:193-203. https://doi.org/10.1016/bs.mie.2021.04.021 PMid: 34742388

Gupta SK, Shukla P. Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: A review. Front Pharmacol. 2017;8:419. https://doi.org/10.3389/fphar.2017.00419 PMid: 28725194

Dahodwala H, Lee KH. The fickle CHO: A review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr Opin Biotechnol. 2019;60:128-137. https://doi.org/10.1016/j.copbio.2019.01.011 PMid: 30826670

Reinhart D, Damjanovic L, Kaisermayer C, et al. Bioprocessing of recombinant CHO-K1, CHO-DG44, and CHO-S: CHO expression hosts favor either mAb production or biomass synthesis. Biotechnol J. 2019;14(3):e1700686. https://doi.org/10.1002/biot.201700686 PMid: 29701329

Vieira HL, Pereira AC, Peixoto CC, et al. Improvement of recombinant protein production by an anti-apoptotic protein from hemolymph of Lonomia obliqua. Cytotechnology. 2010;62(6):547-555. https://doi.org/10.1007/s10616-010-9305-x PMid: 20936342

Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50(6):1352-1364. https://doi.org/10.1016/j.immuni.2019.05.020 PMid: 31216460

Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017;24(8):1380-1389. https://doi.org/10.1038/cdd.2017.44 PMid: 28498362

Jan R, Chaudhry GE. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull. 2019;9(2):205-218. PMid: 31380246

Lamkanfi M, Kanneganti TD. Caspase-7: A protease involved in apoptosis and inflammation. Int J Biochem Cell Biol. 2010;42(1):21-24. https://doi.org/10.1016/j.biocel.2009.09.013 PMid: 19782763

Najafi S, Alibakhshi A, Mahnam K, et al. Docking study on Caspase 3 inhibitors as potential drugs for traumatic brain cell apoptosis. Lett Drug Des Discov. 2024;21(3): 542-551. https://doi.org/10.2174/1570180819666220915101829

Pham B, Eron SJ, Hill ME, et al. A nanopore approach for analysis of Caspase-7 activity in cell lysates. Biophys J. 2019;117(5):844-855. https://doi.org/10.1016/j.bpj.2019.07.045 PMid: 31427065

Parui AL, Bose K. Caspases: Regulatory mechanisms and their implications in pathogenesis and therapeutics. In: Chakraborti S, Dhalla NS, editors. Pathophysiological Aspects of Proteases. Singapore: Springer Singapore; 2017. p. 423-488. https://doi.org/10.1007/978-981-10-6141-7_18

Chai J, Wu Q, Shiozaki E, et al. Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding. Cell. 2001;107(3):399-407. https://doi.org/10.1016/S0092-8674(01)00544-X PMid: 11701129

Sterling T, Irwin JJ. ZINC 15 -Ligand discovery for everyone. J Chem Inf Model. 2015;55(11):2324-2337. https://doi.org/10.1021/acs.jcim.5b00559 PMid: 26479676

Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera -A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612. https://doi.org/10.1002/jcc.20084 PMid: 15264254

O'Boyle NM, Banck M, James CA, et al. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. https://doi.org/10.1186/1758-2946-3-33 PMid: 21982300

Forli S, Huey R, Pique ME, et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11(5):905-919. https://doi.org/10.1038/nprot.2016.051 PMid: 27077332

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-250. https://doi.org/10.1007/978-1-4939-2269-7_19 PMid: 25618350

Schrodinger L. The PyMOL molecular graphics system. Version. 1.3r1. 2010.

Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes, 2016.

Cheng F, Li W, Zhou Y, et al. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099-3105. https://doi.org/10.1021/ci300367a PMid: 23092397

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717 PMid: 28256516

Barkhordari A, Mahnam K, Mirmohammad-Sadeghi H. Designing a new bispecific tandem single-chain variable fragment antibody against tumor necrosis factor-? and interleukin-23 using in silico studies for the treatment of rheumatoid arthritis. J Mol Model. 2020;26(9):225. https://doi.org/10.1007/s00894-020-04510-5 PMid: 32778954

Kumari R, Kumar R. Open Source Drug Discovery Consortium, et al. g_mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951-1962. https://doi.org/10.1021/ci500020m PMid: 24850022

Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-461. https://doi.org/10.1517/17460441.2015.1032936 PMid: 25835573

Yamaguchi K, Ogawa R, Tsukahara M, et al. Efficient production of recombinant proteins in suspension CHO cells culture using the Tol2 transposon system coupled with cycloheximide resistance selection. Sci Rep. 2023;13(1):7628. https://doi.org/10.1038/s41598-023-34636-4 PMid: 37165015

Szkodny AC, Lee KH. Biopharmaceutical manufacturing: Historical perspectives and future directions. Annu Rev Chem Biomol Eng. 2022;13:141-165. https://doi.org/10.1146/annurev-chembioeng-092220-125832 PMid: 35300518

Zheng L, Yang L, Zhao X, et al. Effect of risperidone on proliferation and apoptosis of MC3T3-E1 cells. Braz J Med Biol Res. 2019;52(3):e8098. https://doi.org/10.1590/1414-431x20188098 PMid: 30810624

Pang L, Li P, Zheng L, et al. Risperidone induces apoptosis of human osteoblast cell line hFob1.19 through Wnt/?-catenin signaling pathway. Basic Clin Med. 2023;43(3):374-379. https://doi.org/10.16352/j.issn.1001-6325.2023.03.374

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Electronic Journal of Biotechnology