Modeling the kinetics of pyrite ash biodesulfurization by Saccharomyces cerevisiae and Acetobacter aceti in liquid state bioreactors
Full Text
Reprint PDF

Keywords

Acetobacter aceti
biodesulfurization
kinetics
modeling
pyrite ash
Saccharomyces cerevisiae.

How to Cite

1.
Ermurat Y. Modeling the kinetics of pyrite ash biodesulfurization by Saccharomyces cerevisiae and Acetobacter aceti in liquid state bioreactors. Electron. J. Biotechnol. [Internet]. 2013 Mar. 13 [cited 2024 Dec. 11];16(2). Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v16n2-1

Abstract

Background: Modeling the kinetics of the biodesulphurization bioprocess for the refining of pyrite ash by Saccharomyces cerevisiae and Acetobacter aceti have been studied in batch-type liquid- state bioreactors.

Results: The biodesulphurization experiments were performed at varying temperatures of 25ºC, 30ºC and 35ºC for eight weeks. Glucose, acetic acid and ethyl alcohol were used in the incubation media as substrates and acid sources. pH and oxidation reduction potential (ORP) observations have been determined weekly and the dissolved sulphur was measured at the end of the eight weeks trials. An equation calculating pH was derived from the iron oxidation reaction containing the ferric to ferrous iron [Fe+3/Fe+2] ratio as a variable. The Michaelis-Menten predictive specific growth rates (qFe+2), which were estimated from pH and ORP observations, were compared by plotting [qFe+2]pH vs. [qFe+2]mV. The highest ratio of dissolved sulphur over total sulphur (Sd/St) was found to be 0.5 in the bio desulphurization processes.

Conclusions: The model provides predictions of ferric to ferrous iron rates and specific growth rates [qFe+2]pH vs. [qFe+2]mV and can be used for the determination of oxidized and reduced ions. The ratios of dissolved sulphur to total sulphur (Sd/St) have shown some promising results for S. cerevisiae to be used as a biodesulphurization and refining microorganism for pyrite ash and the other sulphide minerals.

 

 

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.