Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica
Full Text
Reprint PDF

Keywords

lipase
microbial lipids
single-cell protein
tallow
Yarrowia lipolytica

How to Cite

1.
Papanikolaou S, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G. Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electron. J. Biotechnol. [Internet]. 2007 Jul. 15 [cited 2024 Oct. 9];10(3):0-. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v10n3-8

Abstract

The aim of the present study was to assess the potential of valorisation of a solid industrial derivative of tallow, composed of saturated free-fatty acids ("stearin"), by fermentations carried out by the yeast Yarrowia lipolytica ACA-DC 50109 in order to produce microbial lipid, biomass and extra-cellular lipase. High quantities of biomass were produced (biomass yield of around 1.1 ± 0.1 g of total biomass produced per g of fat consumed) when the organism was grown in shake flasks, regardless of the concentration of extra-cellular nitrogen present. Cellular lipids accumulated in notable quantities regardless of the nitrogen availability of the medium, though this process was clearly favoured at high initial fat and low initial nitrogen concentrations. The maximum quantity of fat produced was 7.9 mg/ml corresponding to 52.0% (wt/wt) of lipid in the dry biomass. Lipase production was critically affected by the medium composition and its concentration clearly increased with increasing concentrations of fat and extra-cellular nitrogen concentration reaching a maximum level of 2.50 IU/ml. Lipase concentration decreased in the stationary growth phase. In bioreactor trials, in which higher agitation and aeration conditions were employed compared with the equivalent trial in the flasks, significantly higher quantities of biomass were produced (maximum concentration 30.5 mg/ml, yield of 1.6 g of total biomass produced per g of fat consumed) while remarkably lower quantities of cellular lipids and extra-cellular lipase were synthesised. Numerical models successfully simulated both conversion of substrate fat into biomass and production and subsequent hydrolysis of extra-cellular lipase and presented a satisfactory predictive ability verifying the potential for single-cell protein and lipase production by Yarrowia lipolytica ACA-DC 50109. In all cultures, the mycelial form of the culture was dominant with few single cells present.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.