Mapping the genomic position of xylanase genes on Bacillus safensis FB03 and optimizing the xylanase fermentation medium by Box-Behnken Design from an unconventional carbon source

Graphical abstract

Mapping the genomic position of xylanase genes on Bacillus safensis FB03 and optimizing the xylanase fermentation medium by Box-Behnken Design from an unconventional carbon source
PDF
HTML

Keywords

Bacillus safensis
Banana rachis
Box-Behnken Design (BBD)
Genome annotation
Industrially important enzymes
Lignocellulosic biomass
Media optimization
Peel of banana tree
Xylanase fermentation
Xylanase genes

Categories

How to Cite

1.
Boby F, Bhuiyan MNH, Parvez MM, Islam MJ, Jannati I. Mapping the genomic position of xylanase genes on Bacillus safensis FB03 and optimizing the xylanase fermentation medium by Box-Behnken Design from an unconventional carbon source. Electron. J. Biotechnol. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 2];78:76-85. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2497

Abstract

Background: The ability of Bacillus safensis to synthesize xylanase and other industrially important enzymes utilizing lignocellulosic biomass makes it advantageous for a variety of biotechnology applications. Thus, the current investigation aimed to optimize conditions and medium components for maximizing xylanase production by a newly isolated Bacillus safensis strain using banana rachis (peel of banana tree) as a novel source of carbon.

Results: Upon employing Box-Behnken Design (BBD) statistical approach, the highest enzyme activity was obtained 25.24 U/ml at 2 g/L banana rachis, 1 g/L yeast extract, 1 g/L K2HPO4, 5 g/L NaNO3, 35°C and 72 h of incubation time. The purified enzyme showed 10 times higher enzyme activity (143.6 U/ml) with 2.3 mg/ml protein concentration. The enzyme was found to maintain stability up to 60°C in a wide range of pH (6 to 10). Analysis of whole genome sequencing data revealed the presence of xylanase production and xylan metabolic genes (xynA, xynB, xylP, xylT) on Bacillus safensis FB03. Also, from genome annotation, different carbohydrate metabolic genes such as glycoside hydrolases (GHs), glycosyl transferases (GTs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), auxiliary activities (AAs), and carbohydrate binding modules (CBMs) were identified.

Conclusions: In accordance with our research, banana rachis can be considered as a major medium component to develop an economical fermentation process for the production of xylanase by Bacillus safensis FB03. Additionally, identification of the genomic location of xyl genes provides valuable insight towards genetic engineering for the development of a more potent industrial strain.

https://doi.org/10.1016/j.ejbt.2025.05.004
PDF
HTML

References

Rastogi, M., Shrivastava, S., Shukla, P. Bioprospecting of xylanase producing fungal strains: Multilocus phylogenetic analysis and enzyme activity profiling. Journal of Basic Microbiology, 2022;62(2):150–161. https://doi.org/10.1002/jobm.202100408 PMid: 34783043

Chaudhary, R., Pandey, A., Tiwari, R., et al. Current status of xylanase for biofuel production: A review on classification and characterization. Biomass Conversion and Biorefinery, 2021;13(10):8773–8791. https://doi.org/10.1007/s13399-021-01948-2

Walia, A., Guleria, S., Mehta, P., et al. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech, 2017;7(1):11. https://doi.org/10.1007/s13205-016-0584-6 PMid: 28391477

Shrivastava, S. Introduction to glycoside hydrolases: Classification, identification and occurrence. In: Industrial Applications of Glycoside Hydrolases. Springer, Singapore 2020:3–84. https://doi.org/10.1007/978-981-15-4767-6_1

Dias, L. M., dos Santos, B. V., Albuquerque, C. J. B., et al. Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. Journal of Applied Microbiology, 2018;124(3:708–718. https://doi.org/10.1111/jam.13672 PMid: 29253315

Bhardwaj, N., Kumar, B., Verma, P. A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 2019;6(1):40. https://doi.org/10.1186/s40643-019-0276-2

Parab, P., Khandeparker, R. Xylanolytic enzyme consortia from Bacillus sp. NIORKP76 for improved biobleaching of kraft pulp. Bioprocess and Biosystems Engineering, 2021;44(12):2513–2524. https://doi.org/10.1007/s00449-021-02623-6 PMid: 34402971

Contesini, F.J., de Melo, R.R., Sato, H.H. An overview of Bacillus proteases: From production to application. Critical Reviews in Biotechnology, 2018:38(3):321–334. https://doi.org/10.1080/07388551.2017.1354354 PMid: 28789570

Rastogi, M., Shrivastava, S. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews, 2017;80:330–340. https://doi.org/10.1016/j.rser.2017.05.225

Lateef, A., Adelere, I.A., Gueguim-Kana, E.B. The biology and potential biotechnological applications of Bacillus safensis. Biologia, 2015;70(4):411–419. https://doi.org/10.1515/biolog-2015-0062

Devi, S., Dwivedi, D., Bhatt, A.K. Utilization of agroresidues for the production of xylanase by Bacillus safensis XPS7 and optimization of production parameters. Fermentation, 2022;8(5):221. https://doi.org/10.3390/fermentation8050221

Rekik, H., Jaouadi N.Z., Gardouri F, et al. Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. International Journal of Biological Macromolecules, 2019;121:1227–1239. https://doi.org/10.1016/j.ijbiomac.2018.10.139 PMid: 30352229

Patel, K., Parikh, S. Identification, production, and purification of a novel lipase from Bacillus safensis. Journal of Applied Biology and Biotechnology, 2022;10(4):73–76. https://doi.org/10.7324/JABB.2022.100410

Pandya, U., Saraf, M. Purification and characterization of antifungal chitinase from Bacillus safensis MBCU6 and its application for production of chito-oligosaccharides. Biologia 2015;70(7):863–868. https://doi.org/10.1515/biolog-2015-0112

Sharma, H., Singh, J., Batra, N. Isolation and molecular identification of ?-amylase producing bacteria from hot water spring by 16S rRNA gene sequencing. Indian Journal of Experimental Biology, 2019;57:937-944.

Singh, R.S., Singh, R.P. Response surface optimization of endoinulinase production from a cost effective substrate by Bacillus safensis AS-08 for hydrolysis of inulin. Biocatalysis and Agricultural Biotechnology, 2014;3(4):365–372. https://doi.org/10.1016/j.bcab.2014.05.002

Nath, A., Sarkar, S., Maitra, M., et al. An experimental study on production of intracellular ?-galactosidase at different conditions by batch process using isolated Bacillus safensis (JUCHE 1) and characterization of synthesized ?-galactosidase. Journal of the Institution of Engineers (India): Series E, 2012;93(2):55–60. https://doi.org/10.1007/s40034-013-0011-z

Al-Shawi, A.H. Enhanced xylanase production from Bacillus safensis MABS6 using sorghum straw substrate: Optimization, characterization, and biotechnological applications. Catrina: The International Journal of Environmental Sciences, 2024;29(1):9–24. https://doi.org/10.21608/cat.2023.239574.1209

Lateef, A., AdelereI A., Gueguim-Kana, E.B. Bacillus safensis LAU 13: A new source of keratinase and its multi-functional biocatalytic applications. Biotechnology & Biotechnological Equipment, 2015;29(1):54–63. https://doi.org/10.1080/13102818.2014.986360 PMid: 26740788

Azeem, M.A., Shah FH, Ullah A, et al. Biochemical characterization of halotolerant Bacillus safensis PM22 and its potential to enhance growth of maize under salinity stress. Plants, 2022;11(13):1721. https://doi.org/10.3390/plants11131721 PMid: 35807673

Zagorchev, L., Kamenova, P., Odjakova, M. The role of plant cell wall proteins in response to salt stress. The Scientific World Journal, 2014;2014(1):764089. https://doi.org/10.1155/2014/764089 PMid: 24574917

Wu, P.S., Liu, C.H., Hu, S.Y. Probiotic Bacillus safensis NPUST1 administration improves growth performance, gut microbiota, and innate immunity against Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Microorganisms, 2021;9(12):2494. https://doi.org/10.3390/microorganisms9122494 PMid: 34946096

Kwon, E.H., Adhikari A, Imran M, et al. Novel melatonin-producing Bacillus safensis EH143 mitigates salt and cadmium stress in soybean. Journal of Pineal Research, 2024;76(4):e12957. https://doi.org/10.1111/jpi.12957 PMid: 38803089

Priyalaxmi, R., Murugan, A., Raja, P., et al. Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. International Journal of Current Microbiology and Applied Sciences, 2014;3(12):326-335.

Kamble, R.D., Jadhav, A.R. Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. International Journal of Microbiology, 2012;2012(1):683193. https://doi.org/10.1155/2012/683193 PMid: 22315613

Samanta, A.K., Kolte, A.P., Senani, S., et al. A simple and efficient diffusion technique for assay of endo ?-1,4-xylanase activity. Brazilian Journal of Microbiology, 2011;42(4):1349–1353. https://doi.org/10.1590/S1517-83822011000400016 PMid: 24031763

Bhalla, A., Bischoff, K.M., Sani, R.K. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass. Frontiers in Bioengineering and Biotechnology, 2015;3:84. https://doi.org/10.3389/fbioe.2015.00084 PMid: 26137456

Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976;72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3 PMid: 942051

Grant, J.R., Enns E, Matinier E, et at. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Research, 2023;51(W1):W484–W492. https://doi.org/10.1093/nar/gkad326 PMid: 37140037

Drula, E., Garron, M. L., Dogan, S., et al. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Research,2022;50(D1):D571–D577. https://doi.org/10.1093/nar/gkab1045 PMid: 34850161

Lodi, R.S., Dong X., Jiang C, et al. Antimicrobial activity and enzymatic analysis of endophytes isolated from Codonopsis pilosula. FEMS Microbiology Ecology, 2023;99(8):fiad071. https://doi.org/10.1093/femsec/fiad071 PMid: 37365694

Tarafdar, A., Sirohi R, Gaur VK, et al. Engineering interventions in enzyme production: Lab to industrial scale. Bioresource Technology, 2021;326:124771. https://doi.org/10.1016/j.biortech.2021.124771 PMid: 33550211

Marimuthu, M., Sorimuthu, A., Muruganantham, S. Production and optimization of xylanase enzyme from Bacillus subtilis using agricultural wastes by solid state fermentation. International Journal of Pharmaceutical Investigation, 2019;9(4):169–173.

Al Mousa, A.A., Abo-Dahab, N.F., Hassane, A.M.A., et al. Harnessing Mucor spp. for xylanase production: Statistical optimization in submerged fermentation using agro-industrial wastes. BioMed Research International, 2022;2022(1):3816010. https://doi.org/10.1155/2022/3816010 PMid: 35496057

Abdella, A., Segato, F., Wilkins, M.R. Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant Aspergillus nidulans strain. Biotechnology Reports, 2020;26:e00457. https://doi.org/10.1016/j.btre.2020.e00457 PMid: 32420050

Güler, F., Özçelik, F. Screening of xylanase producing Bacillus species and optimization of xylanase process parameters in submerged fermentation. Biocatalysis and Agricultural Biotechnology, 2023;51:102801. https://doi.org/10.1016/j.bcab.2023.102801

Prabha, B., Ramesh, D., Sriramajayam, S., et al. Optimization of pyrolysis process parameters for fuel oil production from the thermal recycling of waste polypropylene grocery bags using the Box–Behnken design. Recycling, 2024;9(1):15. https://doi.org/10.3390/recycling9010015

Bakry, M.M., Salem, S.S., Atta, H.M., et al. Xylanase from thermotolerant Bacillus haynesii strain: Synthesis, characterization, optimization using Box-Behnken Design, and biobleaching activity. Biomass Conversion and Biorefinery, 2024;14(8):9779–9792. https://doi.org/10.1007/s13399-022-03043-6

Salmanizadeh, H., Beheshti-Maal, K., Nayeri, H., et al. Optimization of xylanase production by Pichia kudriavzevii and Candida tropicalis isolated from the wood product workshop. Brazilian Journal of Microbiology, 2024;55(1):155–168. https://doi.org/10.1007/s42770-023-01171-3 PMid: 37957443

Yadav, P., Maharjan J, Korpole S, et al. Production, purification, and characterization of thermostable alkaline xylanase from Anoxybacillus kamchatkensis NASTPD13. Frontiers in Bioengineering and Biotechnology, 2018;6:65. https://doi.org/10.3389/fbioe.2018.00065 PMid: 29868578

Sanghi, A., Garg, N., Gupta, V.K., et al. One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ash. Brazilian Journal of Microbiology, 2010;41(2):467-476. https://doi.org/10.1590/S1517-83822010000200029 PMid: 24031518

Ketsakhon, P., Thammasittirong, A., Thammasittirong, S.N.R. Adding value to rice straw waste for high-level xylanase production using a new isolate of Bacillus altitudinis RS3025. Folia Microbiologica, 2023;68(1):87–99. https://doi.org/10.1007/s12223-022-00998-x PMid: 35945409

Saleem, A., Waris, S., Ahmed, T., et al. Biochemical characterization and molecular docking of cloned xylanase gene from Bacillus subtilis RTS expressed in E. coli. International Journal of Biological Macromolecules, 2021;168:310–321. https://doi.org/10.1016/j.ijbiomac.2020.12.001 PMid: 33309670

Dhaver, P., Pletschke, B., Sithole, B., et al. Optimization, purification, and characterization of xylanase production by a newly isolated Trichoderma harzianum strain by a two-step statistical experimental design strategy. Scientific Reports, 2022;12(1):17791. https://doi.org/10.1038/s41598-022-22723-x PMid: 36273028

Gupta, G.K., Dixit, M., Kapoor, R K., et al. Xylanolytic enzymes in pulp and paper industry: New technologies and perspectives. Molecular Biotechnology, 2022;64(2):130–143. https://doi.org/10.1007/s12033-021-00396-7 PMid: 34580813

Nagar, S., Gupta, V.K., Kumar, D., et al. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. Journal of Industrial Microbiology and Biotechnology, 2010;37(1):71–83. https://doi.org/10.1007/s10295-009-0650-8 PMid: 19859753

Sepahy, A.A., Ghazi, S., Sepahy, M.A. Cost-effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 fermented on agricultural waste. Enzyme Research, 2011;2011(1):593624. PMid: 21904670

de Carvalho, L.M., Borelli G, Camargo AP, et al. Bioinformatics applied to biotechnology: A review towards bioenergy research. Biomass and Bioenergy, 2019;123:195–224. https://doi.org/10.1016/j.biombioe.2019.02.016

Deshmukh, R.A., Jagtap, S., Mandal, M.K., et al. Purification, biochemical characterization and structural modelling of alkali-stable ?-1,4-xylan xylanohydrolase from Aspergillus fumigatus R1 isolated from soil. BMC Biotechnology, 2016;16(1):11. https://doi.org/10.1186/s12896-016-0242-4 PMid: 26847222

Sharma, P.K., Chand, D. Purification and characterization of thermostable cellulase-free xylanase from Pseudomonas sp. XPB-6. Advances in Microbiology, 2012;2(1):17–25. https://doi.org/10.4236/aim.2012.21003

Halmschlag, B., Hoffmann K, Hanke R, et al. Comparison of isomerase and Weimberg pathway for ?-PGA production from xylose by engineered Bacillus subtilis. Frontiers in Bioengineering and Biotechnology, 2020;7:476. https://doi.org/10.3389/fbioe.2019.00476 PMid: 32039180

Mazmanian, S.K., Round, J.L., Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008;453(7195):620–625. https://doi.org/10.1038/nature07008 PMid: 18509436

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Electronic Journal of Biotechnology