Abstract
Background: Colon cancer is a prevalent malignancy causing significant global morbidity and mortality. The RNA methyltransferase Aly/REF export factor (ALYREF), which binds 5-methylcytosine (m5C)-modified messenger RNA, represents a potential diagnostic and therapeutic target in cancer. However, its specific role and mechanism in colon cancer progression remain unexplored.
Results: ALYREF expression was significantly elevated in colon cancer tissues and cell lines compared to normal controls. Depletion of ALYREF suppressed colon cancer cell proliferation, migration, and invasion, while simultaneously promoting apoptosis and ferroptosis. Analysis revealed proprotein convertase subtilisin/kexin type 9 (PCSK9) is highly expressed in colon cancer and positively regulated by ALYREF. Mechanistically, ALYREF directly bound to and stabilized PCSK9 messenger RNA in a manner dependent on m5C modification. Crucially, the anti-tumor effects resulting from ALYREF knockdown were reversed by overexpressing PCSK9. Consistent with cellular findings, silencing ALYREF significantly inhibited tumor growth in vivo using xenograft models.
Conclusions: This study demonstrates that ALYREF drives colon cancer malignancy by stabilizing PCSK9 messenger RNA via m5C methylation, thereby enhancing PCSK9 expression. These findings establish the ALYREF/PCSK9 axis as a critical mechanism in colon cancer progression, highlighting its potential as a novel therapeutic target for intervention.
References
Menon G, Recio-Boiles A, Lotfollahzadeh S, et al. Colon Cancer. StatPearls. Treasure Island (FL) ineligible companies. StatPearls Publishing LLC.; 2024.
Morgan E, Arnold M, Gini A, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2023;72(2):338-44. https://doi.org/10.1136/gutjnl-2022-327736 PMid: 36604116
Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 2021;14(10):101174. https://doi.org/10.1016/j.tranon.2021.101174 PMid: 34243011
Tong D, Tian Y, Ye Q, et al. Improving the prognosis of colon cancer through knowledge-based clinical-molecular integrated analysis. Biomed Res Int 2021;2021:9987819. https://doi.org/10.1155/2021/9987819 PMid: 33928165
Wang X, Yuwen T-J, Zhong Y, et al. A new method for predicting the prognosis of colorectal cancer patients through a combination of multiple tumor-associated macrophage markers at the invasive front. Heliyon 2023;9(2):e13211. https://doi.org/10.1016/j.heliyon.2023.e13211 PMid: 36798759
Vasile L, Olaru A, Munteanu M, et al. Prognosis of colorectal cancer: Clinical, pathological and therapeutic correlation. Rom J Morphol Embryol 2012;53(2):383-91.
Renfro LA, Grothey A, Kerr D, et al. Survival following early-stage colon cancer: An ACCENT-based comparison of patients versus a matched international general population. Ann Oncol 2015;26(5):950-8. https://doi.org/10.1093/annonc/mdv073 PMid: 25697217
Mo S, Dai W, Wang H, et al. Early detection and prognosis prediction for colorectal cancer by circulating tumour DNA methylation haplotypes: A multicentre cohort study. eClinicalMedicine 2023;55:101717. https://doi.org/10.1016/j.eclinm.2022.101717 PMid: 36386039
Donnelly C, Hart N, McCrorie AD, et al. Predictors of an early death in patients diagnosed with colon cancer: A retrospective case-control study in the UK. BMJ Open 2019;9(6):e026057. https://doi.org/10.1136/bmjopen-2018-026057 PMid: 31221871
Malki A, ElRuz RA, Gupta I, et al. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements. Int J Mol Sci 2020;22(1):130. https://doi.org/10.3390/ijms22010130 PMid: 33374459
Lu Y, Yang L, Feng Q, et al. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. Genomics, Proteomics Bioinformatics 2024;22(5):qzae063. https://doi.org/10.1093/gpbjnl/qzae063 PMid: 39340806
Zhang Y, Zhang LS, Dai Q, et al. 5-methylcytosine (m5C) RNA modification controls the innate immune response to virus infection by regulating type I interferons. Proc Natl Acad Sci USA 2022;119(42):e2123338119. https://doi.org/10.1073/pnas.2123338119 PMid: 36240321
Chen Z, Li Q, Lin Y, et al. m5C regulator-mediated methylation modification phenotypes characterized by distinct tumor microenvironment immune heterogenicity in colorectal cancer. Sci Rep 2023;13(1):11950. https://doi.org/10.1038/s41598-023-37300-z PMid: 37488178
Cui Y, Lv P, Zhang C. NSUN6 mediates 5-methylcytosine modification of METTL3 and promotes colon adenocarcinoma progression. J Biochem Mol Toxicol 2024;38(6):e23749. https://doi.org/10.1002/jbt.23749 PMid: 38800929
Huang Y, Huang C, Jiang X, et al. Exploration of potential roles of m5C-related regulators in colon adenocarcinoma prognosis. Front Genet 2022;13:816173. https://doi.org/10.3389/fgene.2022.816173 PMid: 35281843
Xue C, Gu X, Zheng Q, et al. ALYREF mediates RNA m5C modification to promote hepatocellular carcinoma progression. Signal Transduct Target Ther 2023;8(1):130. https://doi.org/10.1038/s41392-023-01395-7 PMid: 36934090
Zhao Y, Xing C, Peng H. ALYREF (Aly/REF export factor): A potential biomarker for predicting cancer occurrence and therapeutic efficacy. Life Sci 2024;338:122372. https://doi.org/10.1016/j.lfs.2023.122372 PMid: 38135116
Wang JZ, Zhu W, Han J, et al. The role of the HIF-1?/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun 2021;41(7):560-75. https://doi.org/10.1002/cac2.12158 PMid: 33991457
Yang Q, Wang M, Xu J, et al. LINC02159 promotes non-small cell lung cancer progression via ALYREF/YAP1 signaling. Mol Cancer 2023;22(1):122. https://doi.org/10.1186/s12943-023-01814-x PMid: 37537569
Wang N, Chen RX, Deng MH, et al. m5C-dependent cross-regulation between nuclear reader ALYREF and writer NSUN2 promotes urothelial bladder cancer malignancy through facilitating RABL6/TK1 mRNAs splicing and stabilization. Cell Death Dis 2023;14(2):139. https://doi.org/10.1038/s41419-023-05661-y PMid: 36806253
Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012;11(5):367-83. https://doi.org/10.1038/nrd3699 PMid: 22679642
Rose M, Duhamel M, Rodet F, et al. The role of proprotein convertases in the regulation of the function of immune cells in the oncoimmune response. Front Immunol 2021;12:667850. https://doi.org/10.3389/fimmu.2021.667850 PMid: 33995401
Artenstein AW, Opal SM. Proprotein convertases in health and disease. N Engl J Med 2011;365(26):2507-18. https://doi.org/10.1056/NEJMra1106700 PMid: 22204726
Turpeinen H, Ortutay Z, Pesu M. Genetics of the first seven proprotein convertase enzymes in health and disease. Curr Genomics 2013;14(7):453-67. https://doi.org/10.2174/1389202911314050010 PMid: 24396277
Cammisotto V, Baratta F, Simeone PG, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) beyond lipids: The role in oxidative stress and thrombosis. Antioxidants 2022;11(3):569. https://doi.org/10.3390/antiox11030569 PMid: 35326219
Bhattacharya A, Chowdhury A, Chaudhury K, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): A potential multifaceted player in cancer. Biochim Biophys Acta - Rev Cancer 2021;1876(1):188581. https://doi.org/10.1016/j.bbcan.2021.188581 PMid: 34144130
Qin J, Liu L, Su XD, et al. The effect of PCSK9 inhibitors on brain stroke prevention: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2021;31(8):2234-43. https://doi.org/10.1016/j.numecd.2021.03.026 PMid: 34052073
Magnasco L, Sepulcri C, Antonello RM, et al. The role of PCSK9 in infectious diseases. Curr Med Chem 2022;29(6):1000-15. https://doi.org/10.2174/0929867328666210714160343 PMid: 34269657
Hummelgaard S, Vilstrup JP, Gustafsen C, et al. Targeting PCSK9 to tackle cardiovascular disease. Pharmacol & Ther 2023;249:108480. https://doi.org/10.1016/j.pharmthera.2023.108480 PMid: 37331523
Melendez QM, Krishnaji ST, Wooten CJ, et al. Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017;625-626:39-53. https://doi.org/10.1016/j.abb.2017.06.001 PMid: 28587771
Wong CC, Wu JL, Ji F, et al. The cholesterol uptake regulator PCSK9 promotes and is a therapeutic target in APC/KRAS-mutant colorectal cancer. Nat Commun 2022;13(1):3971. https://doi.org/10.1038/s41467-022-31663-z PMid: 35803966
Wang L, Li S, Luo H, et al. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res 2022;41(1):303. https://doi.org/10.1186/s13046-022-02477-0 PMid: 36242053
Yang L, Xu Y, Han J, et al. SALL4/ABCB6 axis suppresses ferroptosis in colon cancer by mediating mitophagy. J Biochem Mol Toxicol 2025;39(3):e70183. https://doi.org/10.1002/jbt.70183 PMid: 40052371
Zefrei FJ, Shormij M, Dastranj L, et al. Ferroptosis inducers as promising radiosensitizer agents in cancer radiotherapy. Curr Radiopharm 2024;17(1):14-29. https://doi.org/10.2174/0118744710262369231110065230 PMid: 37974441
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Gastroenterology Rev 2019;14(2):89-103. https://doi.org/10.5114/pg.2018.81072 PMid: 31616522
Yuan Y, Fan Y, Tang W, et al. Identification of ALYREF in pan cancer as a novel cancer prognostic biomarker and potential regulatory mechanism in gastric cancer. Sci Rep 2024;14(1):6270. https://doi.org/10.1038/s41598-024-56895-5 PMid: 38491127
Nulali J, Zhang K, Long M, et al. ALYREF-mediated RNA 5-Methylcytosine modification promotes hepatocellular carcinoma progression via stabilizing EGFR mRNA and pSTAT3 activation. Int J Biol Sci 2024;20(1):331-46. https://doi.org/10.7150/ijbs.82316 PMid: 38164181
Zhong L, Wu J, Zhou B, et al. ALYREF recruits ELAVL1 to promote colorectal tumorigenesis via facilitating RNA m5C recognition and nuclear export. npj Precis Oncol 2024;8(1):243. https://doi.org/10.1038/s41698-024-00737-0 PMid: 39455812
Luo Y, Bai XY, Zhang L, et al. Ferroptosis in cancer therapy: Mechanisms, small molecule inducers, and novel approaches. Drug Des Devel Ther 2024;18:2485-529. https://doi.org/10.2147/DDDT.S472178 PMid: 38919962
Ma W, Hu N, Xu W, et al. Ferroptosis inducers: A new frontier in cancer therapy. Bioorg Chem 2024;146:107331. https://doi.org/10.1016/j.bioorg.2024.107331 PMid: 38579614
Wang H, Cheng Y, Mao C, et al. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther 2021;29(7):2185-208. https://doi.org/10.1016/j.ymthe.2021.03.022 PMid: 33794363
Zhou Q, Meng Y, Li D, et al. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024;9(1):55. https://doi.org/10.1038/s41392-024-01769-5 PMid: 38453898
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 2022;22(7):381-96. https://doi.org/10.1038/s41568-022-00459-0 PMid: 35338310
Zheng Y, Sun L, Guo J, et al. The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: Molecular mechanisms and therapeutic controversy. Cancer Commun 2023;43(10):1071-96. https://doi.org/10.1002/cac2.12487 PMid: 37718480
Rabitha R, Shivani S, Showket Y, et al. Ferroptosis regulates key signaling pathways in gastrointestinal tumors: Underlying mechanisms and therapeutic strategies. World J Gastroenterol 2023;29(16):2433-51. https://doi.org/10.3748/wjg.v29.i16.2433 PMid: 37179581
Dong W, Xu H, Wei W, et al. Advances in the study of ferroptosis and its relationship to autoimmune diseases. Int Immunopharmacol 2024;140:112819. https://doi.org/10.1016/j.intimp.2024.112819 PMid: 39096870
Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther 2020;5(1):108. https://doi.org/10.1038/s41392-020-00216-5 PMid: 32606298
Ma T, Du J, Zhang Y, et al. GPX4-independent ferroptosis—a new strategy in disease’s therapy. Cell Death Discov 2022;8(1):434. https://doi.org/10.1038/s41420-022-01212-0 PMid: 36309489
Li F, Liu T, Dong Y, et al. 5-Methylcytosine RNA modification and its roles in cancer and cancer chemotherapy resistance. J Transl Med 2025;23(1):390. https://doi.org/10.1186/s12967-025-06217-8 PMid: 40181461
Chen B, Hong Y, Zhai X, et al. m6A and m5C modification of GPX4 facilitates anticancer immunity via STING activation. Cell Death Dis 2023;14(12):809. https://doi.org/10.1038/s41419-023-06241-w PMid: 38065948
Liu X, Bao X, Hu M, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 2020;588(7839):693-8. https://doi.org/10.1038/s41586-020-2911-7 PMid: 33177715
Fang S, Yarmolinsky J, Gill D, et al. Association between genetically proxied PCSK9 inhibition and prostate cancer risk: A Mendelian randomisation study. PLoS Med 2023;20(1):e1003988. https://doi.org/10.1371/journal.pmed.1003988 PMid: 36595504

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Electronic Journal of Biotechnology