Abstract
Background: Dry eye disease seriously affects people’s work and life. Chufeng Yisun Decoction is a traditional Chinese medicine decoction used in treating dry eye disease. This study aims to explore the core active ingredients, targets, and mechanisms of CFYSD in dry eye disease, providing new insights for the dry eye disease treatment.
Results: A total of 196 target genes were screened from Chufeng Yisun Decoction, and 170 genes were related to dry eye disease. Gene Ontology and KEGG enrichment analyses showed that Chufeng Yisun Decoction influenced dry eye disease through “Lipid and atherosclerosis”, “Fluid shear stress and atherosclerosis”, and “PI3K-Akt”. The core targets of Chufeng Yisun Decoction in treating dry eye disease were Akt1 and IL-1β. The core active ingredients were kaempferol, wogonin, and quercetin. Molecular docking results showed that the binding energies of kaempferol and Akt1, wogonin and Akt1, quercetin and Akt1, and quercetin and IL-1β were −6.1, −6.1, −6.1, and −7.9 kcal/mol, respectively. Chufeng Yisun Decoction significantly alleviated cell damage and reduced PI3K/Akt pathway-related protein expression. PI3K activation partially reversed the therapeutic effect of Chufeng Yisun Decoction on dry eye disease.
Conclusions: Chufeng Yisun Decoction treats dry eye disease by inactivating the PI3K/Akt pathway through multi-ingredients and multi-targets.
References
Mittal R, Patel S, Galor A. Alternative therapies for dry eye disease. Curr Opin Ophthalmol 2021;32(4):348-61. https://doi.org/10.1097/ICU.0000000000000768 PMid: 34010229
O'Neil EC, Henderson M, Massaro-Giordano M, et al. Advances in dry eye disease treatment. Curr Opin Ophthalmol 2019;30(3):166-78. https://doi.org/10.1097/ICU.0000000000000569 PMid: 30883442
Markoulli M, Hui A. Emerging targets of inflammation and tear secretion in dry eye disease. Drug Discov Today 2019;24(8):1427-32. https://doi.org/10.1016/j.drudis.2019.02.006 PMid: 30802601
Kojima T, Dogru M, Kawashima M, et al. Advances in the diagnosis and treatment of dry eye. Prog Retin Eye Res 2020;78:100842. https://doi.org/10.1016/j.preteyeres.2020.100842 PMid: 32004729
Mohamed HB, Abd El-Hamid BN, Fathalla D, et al. Current trends in pharmaceutical treatment of dry eye disease: A review. Eur J Pharm Sci 2022;175:106206. https://doi.org/10.1016/j.ejps.2022.106206 PMid: 35568107
Su SH, Ho TJ, Yang CC. Retrospective evaluation of the curative effect of traditional Chinese medicine on dry eye disease. Tzu Chi Med J 2021;33(4):365-69. https://doi.org/10.4103/tcmj.tcmj_281_20 PMid: 34760632
Lee TG, Hyun SW, Jo K, et al. Achyranthis radix extract improves urban particulate matter-induced dry eye disease. Int J Environ Res Public Health 2019;16(18):3229. https://doi.org/10.3390/ijerph16183229 PMid: 31487776
Liu P, Jiang P, Yu Y, et al. Modified Danzhi Xiaoyao Powder (MDXP) improves the corneal damage in dry eye disease (DED) mice through phagocytosis. J Ethnopharmacol 2024;321:117544. https://doi.org/10.1016/j.jep.2023.117544 PMid: 38070838
Chao WW, Tan SQ, Liu JH, et al. Dry eye: The effect of Chi-Ju-Di-Huang-Wan Plus Si Wu Tang and the underlying mechanism. J Altern Complement Med 2020;26(2):138-46. https://doi.org/10.1089/acm.2019.0201 PMid: 31651183
Sprogyte L, Park M, Di Girolamo N. Pathogenesis of alkali injury-induced limbal stem cell deficiency: A literature survey of animal models. Cells 2023;12(9):1294. https://doi.org/10.3390/cells12091294 PMid: 37174694
Wu CM, Mao JW, Zhu JZ, et al. DZ2002 alleviates corneal angiogenesis and inflammation in rodent models of dry eye disease via regulating STAT3-PI3K-Akt-NF-?B pathway. Acta Pharmacol Sin 2024;45(1):166-79. https://doi.org/10.1038/s41401-023-01146-y PMid: 37605050
Huang Y, Xia X, Li M, et al. Quercetin inhibits hypertonicity-induced inflammatory injury in human corneal epithelial cells via the PTEN/PI3K/AKT pathway. Tissue Cell 2024;89:102465. https://doi.org/10.1016/j.tice.2024.102465 PMid: 39024865
Han Y, Guo S, Li Y, et al. Berberine ameliorate inflammation and apoptosis via modulating PI3K/AKT/NF?B and MAPK pathway on dry eye. Phytomedicine 2023;121:155081. https://doi.org/10.1016/j.phymed.2023.155081 PMid: 37748390
Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014;6:13. https://doi.org/10.1186/1758-2946-6-13 PMid:24735618
Tian D, Gao Q, Chang Z, et al. Network pharmacology and in vitro studies reveal the pharmacological effects and molecular mechanisms of Shenzhi Jiannao prescription against vascular dementia. BMC Complement Med Ther 2022;22(1):33. https://doi.org/10.1186/s12906-021-03465-1 PMid: 35109845
Liu Y, Zhang J, Liu X, et al. Investigation on the mechanisms of guiqi huoxue capsule for treating cervical spondylosis based on network pharmacology and molecular docking. Medicine 2021;100(37):e26643. https://doi.org/10.1097/MD.0000000000026643 PMid: 34664825
Liu J, Liu J, Tong X, et al. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis. Drug Des Devel Ther 2021;15:3255-76. https://doi.org/10.2147/DDDT.S319786 PMid: 34349502
Mok SR, Mohan S, Grewal N, et al. A genetic database can be utilized to identify potential biomarkers for biphenotypic hepatocellular carcinoma-cholangiocarcinoma. J Gastrointest Oncol 2016;7(4):570-9. https://doi.org/10.21037/jgo.2016.04.01 PMid: 27563447
Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015;43(D1):D789-98. https://doi.org/10.1093/nar/gku1205 PMid: 25428349
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46(D1):D1074-D82. https://doi.org/10.1093/nar/gkx1037 PMid: 29126136
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021;49(D1):D605-D12. https://doi.org/10.1093/nar/gkaa1074 PMid: 33237311
Lu S, Sun X, Zhou Z, et al. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation. Front Immunol 2023;14:1235575. https://doi.org/10.3389/fimmu.2023.1235575 PMid: 37799727
Chen Z, Lin T, Liao X, et al. Network pharmacology based research into the effect and mechanism of Yinchenhao Decoction against Cholangiocarcinoma. Chin Med 2021;16(1):13. https://doi.org/10.1186/s13020-021-00423-4 PMid:33478536
ww PDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 2019;47(D1):D520-D28. https://doi.org/10.1093/nar/gky949 PMid: 30357364
Yuan S, Chan HCS, Filipek S, et al. PyMOL and inkscape bridge the data and the data visualization. Structure 2016;24(12):2041-2. https://doi.org/10.1016/j.str.2016.11.012 PMid: 27926832
Viegas DJ, Edwards TG, Bloom DC, et al. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res 2019;172:104621. https://doi.org/10.1016/j.antiviral.2019.104621 PMid: 31634495
Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Res 2023;51(D1):D1373-D80. https://doi.org/10.1093/nar/gkac956 PMid: 36305812
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31(2):455-61. https://doi.org/10.1002/jcc.21334 PMid: 19499576
Li X, Chen C, Chen Y, et al. Oridonin ameliorates ocular surface inflammatory responses by inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway in dry eye. Exp Eye Res 2024;245:109955. https://doi.org/10.1016/j.exer.2024.109955 PMid: 38843984
Li B, Liu J, Zhang D, et al. Evodiamine promotes autophagy and alleviates oxidative stress in dry eye disease through the p53/mTOR pathway. Invest Ophthalmol Vis Sci 2025;66(3):44. https://doi.org/10.1167/iovs.66.3.44 PMid: 40111353
Bu J, Liu Y, Zhang R, et al. Potential new target for dry eye disease-oxidative stress. Antioxidants 2024;13(4):422. https://doi.org/10.3390/antiox13040422 PMid: 38671870
Sheppard J, Shen Lee B, Periman LM. Dry eye disease: identification and therapeutic strategies for primary care clinicians and clinical specialists. Ann Med 2023;55(1):241-52. https://doi.org/10.1080/07853890.2022.2157477 PMid: 36576348
Chen HC, Chen ZY, Wang TJ, et al. Herbal supplement in a buffer for dry eye syndrome treatment. Int J Mol Sci 2017;18(8):1697. https://doi.org/10.3390/ijms18081697 PMid: 28771187
Yan T, Bi H, Wang Y. Wogonin modulates hydroperoxide-induced apoptosis via PI3K/Akt pathway in retinal pigment epithelium cells. Diagn Pathol 2014;9:154. https://doi.org/10.1186/s13000-014-0154-3 PMid: 25432585

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Electronic Journal of Biotechnology