Tianma granules: Bridging traditional medicine and modern science to combat colorectal cancer via ferroptosis

Graphical abstract

Tianma granules: Bridging traditional medicine and modern science to combat colorectal cancer via ferroptosis
PDF
HTML

Keywords

Anti-cancer potential
Colorectal cancer
Experimental verification
Ferroptosis
Mitochondrial fragmentation
Mitochondrial vacuolation
Network pharmacology
Therapeutic target
Tianma granules

Categories

How to Cite

1.
Ding N, Tang X, Zhang Y, Luo H, Tang Y, Zeng C, He Y, Zhao L. Tianma granules: Bridging traditional medicine and modern science to combat colorectal cancer via ferroptosis. Electron. J. Biotechnol. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 2];78:14-25. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2487

Abstract

Background: This study aims to investigate the ferroptosis-inducing effects of Tianma Granules (TMGs) in colorectal cancer and elucidate its molecular mechanisms. Ferroptosis, an iron-dependent form of regulated cell death, represents a novel therapeutic target for cancer. We combined network pharmacology with experimental validation to explore TMG’s anti-cancer potential through ferroptosis modulation.

Results: Network pharmacology identified 382 ferroptosis-related genes overlapping with 12,944 CRC-associated targets (p < 0.05), with SLC7A11, GPX4, SAT1, PTGS2, and GLS2 prioritized as core targets. In vitro, TMG dose-dependently suppressed CRC cell proliferation (p < 0.05), elevated reactive oxygen species (p < 0.05) and ferrous ion levels (p < 0.01), effects reversed by ferroptosis inhibitor, Ferrostatin-1. c-Casp3 levels were unchanged (p > 0.05), excluding apoptosis. Transmission electron microscopy revealed mitochondrial cristae fragmentation and vacuolation, hallmark features of ferroptosis. Molecular analyses demonstrated TMG-mediated downregulation of SLC7A11 and GPX4, alongside upregulation of SAT1, PTGS2, and GLS2 (p < 0.05). In xenograft models, high-dose TMG (23.2 g/kg) reduced tumor volume, attenuated cachexia, and elevated intratumoral ROS and Fe2+ levels (p < 0.01), corroborating ferroptosis induction in vivo.

Conclusions: TMG suppresses CRC progression by inducing ferroptosis via dual inhibition of SLC7A11/GPX4 and activation of SAT1/PTGS2/GLS2. This study bridges traditional medicine and ferroptosis biology, positioning TMG as a novel therapeutic candidate for CRC.

https://doi.org/10.1016/j.ejbt.2025.06.004
PDF
HTML

References

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin 2024;74(3):229-263. https://doi.org/10.3322/caac.21834 PMid: 38572751

Salva de Torres C, Baraibar I, Saoudi Gonzalez N, et al. Current and emerging treatment paradigms in colorectal cancer: Integrating hallmarks of cancer. Int J Mol Sci 2024;25(13):6967. https://doi.org/10.3390/ijms25136967 PMid: 39000083

Adebayo A, Agbaje K, Adesina SK, et al. Colorectal cancer: Disease process, current treatment options, and future perspectives. Pharmaceutics 2023;15(11):2620. https://doi.org/10.3390/pharmaceutics15112620 PMid: 38004598

Peng TS, Xie B, He YH, et al. Clinical effect of Tianma granules in inhibiting tumor recurrence after colorectal cancer operation. Pharmacology and Clinics of Chinese Materia Medica 2016;32(03):191-193.

Sun Y, Wang MH, Xiao Y, et al. Effect of Tianma Granule on expression of RAGE, CD34 and D2-40 in colon cancer transplanted tumor tissue of nude mice. Clinical Journal of Traditional Chinese Medicine 2023,35(12):2377-2381.

Yao X, Yuan WJ, He YH, et al. Study on the regulation of Tianma granules by TLR4/NF-?B/Klotho pathway of colorectal cancer transplanted in nude mice. Asia-Pacific Traditional Medicine 2024;20(02):11-14.

Tang XJ, He M, Ren Y, et al. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. .J Ethnopharmacol 2025;337 (part 3):119008. https://doi.org/10.1016/j.jep.2024.119008 PMid: 39471879

Nogales C, Mamdouh ZM, List M, et al. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci 2022;43(2):136-150. https://doi.org/10.1016/j.tips.2021.11.004 PMid: 34895945

Zheng SH, Liang YJ, Xue TY, et al. Application of network pharmacology in traditional Chinese medicine for the treatment of digestive system diseases. Front Pharmacol 2024;15:1412997. https://doi.org/10.3389/fphar.2024.1412997 PMid: 39086391

Luo TT, Lu Y, Yan SK, et al. et al. Network pharmacology in research of Chinese Medicine Formula: Methodology, application and prospective. Chin J Integr Med 2020;26:72-80. https://doi.org/10.1007/s11655-019-3064-0 PMid: 30941682

Wang X, Ren XX, Xu L, et al. Recent progress of ferroptosis in cancers and drug discovery. Asian J Pharm Sci 2024;19(4):100939. https://doi.org/10.1016/j.ajps.2024.100939 PMid: 39246507

Ru JL, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014;6(1):13. https://doi.org/10.1186/1758-2946-6-13 PMid: 24735618

Liu DY, Zhao HM, Cheng SM, et al. Scorpio and Scolopendra attenuate inflammation and articular damage in rats with collagen-induced arthritis. J Ethnopharmacol 2012;141(2):603-607. https://doi.org/10.1016/j.jep.2011.08.056 PMid: 21911049

Ji LL, Lv SW, Yang ZX. Research progress on chemical constituents and pharmacological effects of centipede. Special Wild Economic Animal and Plant Research 2020;42(04):75-84.

Zhang KY, Zhang YQ, Yang CM, et al. Research progress on the processing history, chemical composition and pharmacological action of Scorpion. China Journal of Chinese Materia Medica 2024;49(04):868-883.

Davis AP, Wiegers TC, Wiegers J, et al. CTD tetramers: a new online tool that computationally links curated chemicals, genes, phenotypes, and diseases to inform molecular mechanisms for environmental health. Toxicol Sci 2023;195(2):155-168. https://doi.org/10.1093/toxsci/kfad069 PMid: 37486259

Otasek D, Morris JH, Bouças J, et al. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol 2019;20(1):185. https://doi.org/10.1186/s13059-019-1758-4 PMid: 31477170

Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023;51(D1):D638-D646. https://doi.org/10.1093/nar/gkac1000 PMid: 36370105

Griffin RJ, Avery E, Xia CQ. Predicting approximate clinically effective doses in oncology using preclinical efficacy and body surface area conversion: A retrospective analysis. Front Pharmacol 2022;13:830972. https://doi.org/10.3389/fphar.2022.830972 PMid: 35559235

Fan SY, Zhou LJ, Zhang WJ, et al. Ferroptosis: the balance between death and survival in colorectal cancer. Int J Biol Sci 2024;20(10):3773-3783. https://doi.org/10.7150/ijbs.96828 PMid: 39113707

Eng C, Yoshino T, Ruíz-García E, et al. Colorectal cancer. Lancet 2024;404(10449):294-310. https://doi.org/10.1016/S0140-6736(24)00360-X PMid: 38909621

Glover HL, Schreiner A, Dewson G, et al. Mitochondria and cell death. Nat Cell Biol 2024;26(9):1434-1446. https://doi.org/10.1038/s41556-024-01429-4 PMid: 38902422

An XQ, Yu WF, Liu JB, et al. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis 2024;15(8):556. https://doi.org/10.1038/s41419-024-06939-5 PMid: 39090114

Chen AQ, Huang HF, Fang SM, et al. ROS: A “booster” for chronic inflammation and tumor metastasis. Biochim Biophys Acta Rev Cancer 2024;1879(6):189175. https://doi.org/10.1016/j.bbcan.2024.189175 PMid: 39218404

Kang N, Son SB, Min SH, et al. Stimuli-responsive ferroptosis for cancer therapy. Chem Soc Rev 2023;52(12):955-3972. https://doi.org/10.1039/D3CS00001J PMid: 37218295

Qiao Y, Su M, Zhao H, et al. Targeting FTO induces colorectal cancer ferroptotic cell death by decreasing SLC7A11/ GPX4 expression. J Exp Clin Cancer Res 2024;43(1):108. https://doi.org/10.1186/s13046-024-03032-9 PMid: 38600610

Ma X, Cao D, Zhang Y, et al. Apatinib combined with paclitaxel suppresses synergistically TNBC progression through enhancing ferroptosis susceptibility regulated SLC7A11/GPX4/ACSL4 axis. Cell Signal 2025;131:111760. https://doi.org/10.1016/j.cellsig.2025.111760 PMid: 40120963

Liu X, Wang J, Shen K, et al. p53/HIF-1? regulates neuronal aging and autophagy in spinal cord ischemia/reperfusion injury. Mech Ageing Dev 2024;222:112000. https://doi.org/10.1016/j.mad.2024.112000 PMid: 39515667

Wang W, Liu D, Yang L, et al. Compound Kushen injection attenuates angiotensin II?mediated heart failure by inhibiting the PI3K/Akt pathway. Int J Mol Med. 2023;51(3):23. https://doi.org/10.3892/ijmm.2023.5226 PMid: 36734284

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Electronic Journal of Biotechnology