Abstract
Mitochondrial genomes (mtDNA) have become invaluable in species classification and evolutionary studies due to their unique characteristics, including maternal inheritance, and high mutation rates. This review examines the application of mtDNA in tracing evolutionary history, elucidating phylogenetic relationships, and understanding mechanisms of species divergence. The evolution of mitochondrial DNA research from its initial focus on energy metabolism to its current role in biodiversity assessments highlights its significance in modern biology. Mitochondrial DNA barcoding, particularly utilizing the cytochrome c oxidase I (COI) gene, has revolutionized species identification, enabling rapid and accurate classification across diverse taxa. The article further explores the implications of mtDNA in understanding adaptive evolution, as genetic variations within mitochondrial genomes can reveal insights into how species respond to environmental pressures. However, challenges such as gene mixing, hybridization, and incomplete lineage sorting can complicate interpretations of mtDNA data. Thus, integrating mitochondrial with nuclear genome data is advocated to provide a comprehensive view of species relationships and evolutionary patterns. Future research directions emphasize the need for multi-genome studies, investigations into ecological adaptations, and exploration of understudied taxa and ecosystems, which are crucial for enhancing our understanding of biodiversity and informing conservation strategies.
References
DeSalle R, Schierwater B, Hadrys H. MtDNA: The small workhorse of evolutionary studies. Frontiers in Bioscience-Landmark 2017;22(5):873-887. https://doi.org/10.2741/4522 PMid: 27814652
Elyasigorji Z, Izadpanah M, Hadi F, et al. Mitochondrial genes as strong molecular markers for species identification. The Nucleus 2023;66(1):81-93. https://doi.org/10.1007/s13237-022-00393-4
Hwang U-W, Kim W. General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. The Korean Journal of Parasitology 1999;37(4):215-228. https://doi.org/10.3347/kjp.1999.37.4.215 PMid: 10634037
White DJ, Wolff JN, Pierson M, et al. Revealing the hidden complexities of mtDNA inheritance. Molecular Ecology 2008;17(23):4925-4942. https://doi.org/10.1111/j.1365-294X.2008.03982.x PMid: 19120984
Ladoukakis ED, Zouros E. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. Journal of Biological Research-Thessaloniki 2017;24:2. https://doi.org/10.1186/s40709-017-0060-4 PMid: 28164041
Rubinoff D, Holland BS. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology 2005;54(6):952-961. https://doi.org/10.1080/10635150500234674
Ernster L, Schatz G. Mitochondria: a historical review. The Journal of Cell Biology 1981;91(3):227s-255s. https://doi.org/10.1083/jcb.91.3.227s PMid: 7033239
Patwardhan A., Ray S., Roy A. Molecular markers in phylogenetic studies-a review. Journal of Phylogenetics & Evolutionary Biology 2014;2(2):131.
Simon C., Buckley T.R., Frati F., et al. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics 2006;37(1):545-579. https://doi.org/10.1146/annurev.ecolsys.37.091305.110018
Antoniou A, Magoulas A. Application of mitochondrial DNA in stock identification. In: Cadrin SX, Kerr LA, Mariani S, editors. 2nd edition, Academic Press, 2014:257-295. https://doi.org/10.1016/B978-0-12-397003-9.00013-8
Li M., Schönberg A., Schaefer M., et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. The American Journal of Human Genetics 2010;87(2):237-249. https://doi.org/10.1016/j.ajhg.2010.07.014 PMid 20696290.
Dong Z., Wang Y., Li C., et al. Mitochondrial DNA as a molecular marker in insect ecology: Current status and future prospects. Annals of the Entomological Society of America 2021;114(4):470-476. https://doi.org/10.1093/aesa/saab020
Lang B.F., Gray M.W., Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annual Review of Genetics 1999;33(1):351-397. https://doi.org/10.1146/annurev.genet.33.1.351 PMid: 10690412
Virgilio M., Backeljau T., Nevado B., et al. Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics 2010;11:206. https://doi.org/10.1186/1471-2105-11-206 PMid: 20420717
Hebert P.D.N., Stoeckle M.Y., Zemlak T.S., et al. Identification of birds through DNA barcodes. PLoS Biology 2004;2(10):e312. https://doi.org/10.1371/journal.pbio.0020312 PMid: 15455034
Muhammad Tahir H., Akhtar S. Services of DNA barcoding in different fields. Mitochondrial DNA Part A 2016;27(6):4463-4474. https://doi.org/10.3109/19401736.2015.1089572 PMid: 26470942.
Xing B., Zhang Z., Sun R., et al. Mini-DNA barcoding for the identification of commercial fish sold in the markets along the Taiwan Strait. Food Control 2020;112:107143. https://doi.org/10.1016/j.foodcont.2020.107143
Xing B., Chen X., Wu Q., et al. Species authentication and conservation challenges in Chinese fish maw market using mini-DNA barcoding. Food Control 2024;167:110779. https://doi.org/10.1016/j.foodcont.2024.110779
James J.E., Piganeau G., Eyre?Walker A. The rate of adaptive evolution in animal mitochondria. Molecular Ecology 2016;25(1):67-78. https://doi.org/10.1111/mec.13475 PMid: 26578312
Gendron E.M., Qing X., Sevigny J.L., et al. Comparative mitochondrial genomics in Nematoda reveal astonishing variation in compositional biases and substitution rates indicative of multi-level selection. BMC Genomics 2024;25(1):615. https://doi.org/10.1186/s12864-024-10500-1
Gendron E.M., Sevigny J.L., Byiringiro I., et al. Nematode mitochondrial metagenomics: A new tool for biodiversity analysis. Molecular Ecology Resources 2023;23(5):975-989. https://doi.org/10.1111/1755-0998.13761
Pacheco-Sierra G., Amavet P.S. Hybridization and speciation among New-World crocodilian species, Conservation genetics of new world crocodilians 2021 171-183. https://doi.org/10.1093/sysbio/syad072. PMID: 38102727
EDITOR SUGGESTION:
Pacheco-Sierra G, Amavet PS. Hybridization and speciation among new-world crocodilian species. In: Zucoloto RB, Amavet PS, Verdade LM, et al.. editors. Conservation Genetics of New World Crocodilians. Springer, Cham. 2021;171-183. https://doi.org/10.1007/978-3-030-56383-7_7
Cameron S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annual Review of Entomology 2014;59(1):95-117. https://doi.org/10.1146/annurev-ento-011613-162007
Hahn A., Zuryn S. Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species. Antioxidants 2019,8(9):392. https://doi.org/10.3390/antiox8090392 PMid: 31514455.
Nosek J., Tomáška ?. Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Current Genetics 2003;44:73-84. https://doi.org/10.1007/s00294-003-0426-z PMid: 12898180
Boore J.L. Animal mitochondrial genomes. Nucleic Acids Research 1999;27(8):1767-1780. https://doi.org/10.1093/nar/27.8.1767 PMid: 10101183
Roger A.J., Muñoz-Gómez S.A., Kamikawa R. The origin and diversification of mitochondria. Current Biology 2017;27(21):R1177-R1192. https://doi.org/10.1016/j.cub.2017.09.015
D’Souza A.R., Minczuk M. Mitochondrial transcription and translation: overview. Essays in Biochemistry 2018;62(3):309-320. https://doi.org/10.1042/ebc20170102 PMid: 30030363
Zardoya R. Recent advances in understanding mitochondrial genome diversity, F1000Research 2020;9:270. https://doi.org/10.12688/f1000research.21490.1
Pastukh V.M., Gorodnya O.M., Gillespie M.N., et al. Regulation of mitochondrial genome replication by hypoxia: The role of DNA oxidation in D-loop region. Free Radical Biology and Medicine 2016;96:78-88. https://doi.org/10.1016/j.freeradbiomed.2016.04.011
Clayton D.A. Transcription and replication of mitochondrial DNA. Human Reproduction 2000;15(suppl_2):11-17. https://doi.org/10.1093/humrep/15.suppl_2.11 PMid: 11041509
Sumana S.L., Wang P., Zhang C., et al. Genetic diversity of the common carp black strain population based on mtDNA (D-loop and cytb). Heliyon 2024 10(10):e30307. https://doi.org/10.1016/j.heliyon.2024.e30307 PMID: 38774331.
Archibald J.M. Endosymbiosis and eukaryotic cell evolution. Current Biology 2015;25(19):R911-R921. https://doi.org/10.1016/j.cub.2015.07.055
Kutschera U. Symbiogenesis and cell evolution: an anti-Darwinian research agenda? In: Delisle R https://doi.org/10.1007/978-3-319-69123-7_14
Kutschera U. Symbiogenesis and cell evolution: An anti-Darwinian research agenda? In: Delisle R, editor. The Darwinian Tradition in Context. Springer, Cham. 2017;309-331. https://doi.org/10.1007/978-3-319-69123-7_14
Atlante A., Valenti D. Mitochondria have made a long evolutionary path from ancient bacteria immigrants within eukaryotic cells to essential cellular hosts and key players in human health and disease. Current Issues in Molecular Biology 2023;45(5):4451-4479. https://doi.org/10.3390/cimb45050283
Martin W.F., Garg S., Zimorski V. Endosymbiotic theories for eukaryote origin. Philosophical Transactions of the Royal Society B: Biological Sciences 2015;370(1678):20140330. https://doi.org/10.1098/rstb.2014.0330
Kelly S. The economics of organellar gene loss and endosymbiotic gene transfer. Genome Biology 2021;22:345. https://doi.org/10.1186/s13059-021-02567-w
Wang Z., Wu M. An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Scientific Reports 2015;5(1):7949. https://doi.org/10.1038/srep07949
Degli Esposti M. Bioenergetic evolution in proteobacteria and mitochondria. Genome Biology and Evolution 2014;6(12):3238-3251. https://doi.org/10.1093/gbe/evu257
Giannotti D., Boscaro V., Husnik F., et al. The “other” Rickettsiales: an overview of the family “Candidatus Midichloriaceae”. Applied and Environmental Microbiology 2022;88(6):e02432-21. https://doi.org/10.1128/aem.02432-21
Mallo N., Fellows J., Johnson C., et al. Protein import into the endosymbiotic organelles of apicomplexan parasites. Genes 2018;9(8):412. https://doi.org/10.3390/genes9080412
Martin W.F., Tielens A.G., Mentel M., et al. The physiology of phagocytosis in the context of mitochondrial origin. Microbiology and Molecular Biology Reviews 2017;81(3):e00008-17. https://doi.org/10.1128/MMBR.00008-17
Suomalainen A., Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024;187(11):2601-2627. https://doi.org/10.1016/j.cell.2024.04.037
Gentil J., Hempel F., Moog D., et al. Origin of complex algae by secondary endosymbiosis: A journey through time. Protoplasma 2017;254:1835-1843. https://doi.org/10.1007/s00709-017-1098-8 PMid: 28290059
Zammit G., Zammit M.G., Buttigieg K.G. Emerging technologies for the discovery of novel diversity in cyanobacteria and algae and the elucidation of their valuable metabolites. Diversity 2023;15(11):1142. https://doi.org/10.3390/d15111142
Stairs C.W., Leger M.M., Roger A.J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philosophical Transactions of the Royal Society B: Biological Sciences 2015;370(1678):20140326. https://doi.org/10.1098/rstb.2014.0326 PMid: 26323757
Sato M., Sato K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2013;1833(8):1979-1984. https://doi.org/10.1016/j.bbamcr.2013.03.010 PMid: 23524114
Allio R., Donega S., Galtier N., et al. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Molecular Biology and Evolution 2017;34(11):2762-2772. https://doi.org/10.1093/molbev/msx197 PMid: 28981721
Wallace D.C. Mitochondrial DNA mutations in disease and aging. Environmental and Molecular Mutagenesis 2010;51(5):440-450 https://doi.org/10.1002/em.20586 PMid: 20544884
Sloan D.B., Havird J.C., Sharbrough J. The on?again, off?again relationship between mitochondrial genomes and species boundaries. Molecular Ecology 2017;26(8):2212-2236. https://doi.org/10.1111/mec.13959 PMid: 27997046
Antil S., Abraham J.S., Sripoorna S., et al. DNA barcoding, an effective tool for species identification: A review. Molecular Biology Reports 2023;50(1):761-775. https://doi.org/10.1007/s11033-022-08015-7 PMid: 36308581
Andújar C., Arribas P., Yu D.W., et al. Why the COI barcode should be the community DNA metabarcode for the metazoan. Molecular Ecology 2018;27(20):3968-3975. https://doi.org/10.1111/mec.14844 PMid: 30129071
Thomsen P.F., Willerslev E. Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 2015; 183:4-18. https://doi.org/10.1016/j.biocon.2014.11.019
Wanga C., Chenc S., Chenc G., et al. The complete mitochondrial genome of Littoraria ardouiniana (Heude, 1885) (Gastropoda, Littorininae): sequence, structure, and phylogenetic analyses. Russian Journal of Genetics 2024;60(1):100-108. https://doi.org/10.1134/S1022795424010113
Zhang K., Sun J., Xu T., et al. Phylogenetic relationships and adaptation in deep-sea mussels: Insights from mitochondrial genomes. International Journal of Molecular Sciences 2021;22(4):1900. https://doi.org/10.3390/ijms22041900 PMid: 33672964
Boore J.L., Macey J.R., Medina M. Sequencing and comparing whole mitochondrial genomes of animals. Methods in Enzymology 2005;395:311-348. https://doi.org/10.1016/S0076-6879(05)95019-2 PMid: 15865975
Xing B., Chen X., Wang Y., et al. The complete mitochondrial genome of Capitulum mitella with characterization and phylogenetic implications. Russian Journal of Genetics 2023;59(10):1032-1043. https://doi.org/10.1134/S1022795423100149
Satoh T.P., Miya M., Mabuchi K., et al. Structure and variation of the mitochondrial genome of fishes. BMC Genomics 2016;17:719. https://doi.org/10.1186/s12864-016-3054-y PMid: 27604148
Tobler M., Barts N., Greenway R. Mitochondria and the origin of species: Bridging genetic and ecological perspectives on speciation processes. Integrative and Comparative Biology 2019;59(4):900-911. https://doi.org/10.1093/icb/icz025 PMid: 31004483
Soucy S.M., Huang J., Gogarten J.P. Horizontal gene transfer: Building the web of life. Nature Reviews Genetics 2015;16(8):472-482. https://doi.org/10.1038/nrg3962 PMid: 26184597
Dobrogojski J., Adamiec M., Luci?ski R. The chloroplast genome: A review. Acta Physiologiae Plantarum 2020;42(6):98. https://doi.org/10.1007/s11738-020-03089-x
Youle R.J. Mitochondria—Striking a balance between host and endosymbiont. Science 2019:365(6454):eaaw9855. https://doi.org/10.1126/science.aaw9855 PMid: 31416937
Allen J.F. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proceedings of the National Academy of Sciences 2015;112(33):10231-10238. https://doi.org/10.1073/pnas.1500012112 PMid: 26286985
Puertas M.J., González-Sánchez M. Insertions of mitochondrial DNA into the nucleus—effects and role in cell evolution. Genome 2020;63(8):365-374. https://doi.org/10.1139/gen-2019-0151 PMid: 32396758
Michalovová M., Vyskot B., Kejnovsky E. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization, Heredity 2013;111(4):314-320. https://doi.org/10.1038/hdy.2013.51
Havird J.C., Sloan D.B. The roles of mutation, selection, and expression in determining relative rates of evolution in mitochondrial versus nuclear genomes. Molecular Biology and Evolution 2016;33(12):3042-3053. https://doi.org/10.1093/molbev/msw185 PMid: 27563053
Pinard D., Myburg A.A., Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 2019;20:132. https://doi.org/10.1186/s12864-019-5444-4 PMid: 30760198
Zhang G.-J., Dong R., Lan L.-N., et al. Nuclear integrants of organellar DNA contribute to genome structure and evolution in plants. International Journal of Molecular Sciences 2020;21(3):707. https://doi.org/10.3390/ijms21030707 PMid: 31973163
Shapiro J.A. Living organisms author their read-write genomes in evolution. Biology 2017;6(4):42. https://doi.org/10.3390/biology6040042 PMid: 29211049
Kleine T., Maier U.G., Leister D. DNA transfer from organelles to the nucleus: The idiosyncratic genetics of endosymbiosis. Annual Review of Plant Biology 2009;60(1):115-138. https://doi.org/10.1146/annurev.arplant.043008.092119 PMid: 19014347
Arnold M.L., Evolution through genetic exchange, Oxford University Press, 2007. https://doi.org/10.1093/acprof:oso/9780199229031.001.0001
Montanari S.R., Hobbs J.P,A., Pratchett M.S., et al. The importance of ecological and behavioural data in studies of hybridisation among marine fishes, Reviews in Fish Biology and Fisheries 2016;26:181-198. https://doi.org/10.1007/s11160-016-9420-7
Harrison R.G., Larson E.L. Hybridization, introgression, and the nature of species boundaries. Journal of Heredity 2014;105(S1):795-809. https://doi.org/10.1093/jhered/esu033
Glover K.A., Solberg M.F., McGinnity P., et al. Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions. Fish and Fisheries 2017;18(5):890-927. https://doi.org/10.1111/faf.12214
Foltz D.W. Hybridization frequency is negatively correlated with divergence time of mitochondrial DNA haplotypes in a sea star (Leptasterias spp.) species complex. Evolution 1997;51(1):283-288. https://doi.org/10.1111/j.1558-5646.1997.tb02410.x PMid: 28568776
Dufresnes C., Litvinchuk S.N., Rozenblut-Ko?cisty B., et al. Hybridization and introgression between toads with different sex chromosome systems. Evolution Letters 2020;4(5):444-456. https://doi.org/10.1002/evl3.191 PMid: 33014420
Maddison W.P., Knowles L.L. Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 2006;55(1):21-30. https://doi.org/10.1080/10635150500354928 PMid: 16507521
Pahad G., Montgelard C., Jansen van Vuuren B. Phylogeography and niche modelling: Reciprocal enlightenment. Mammalia 2019;84(1):10-25. https://doi.org/10.1515/mammalia-2018-0191
Moum T., Árnason E. Genetic diversity and population history of two related seabird species based on mitochondrial DNA control region sequences. Molecular Ecology 2001;10(10):2463-2478. https://doi.org/10.1046/j.0962-1083.2001.01375.x PMid: 11703652
Moore W.S. Inferring phylogenies from mtDNA variation: Mitochondrial?gene trees versus nuclear?gene trees. Evolution 1995;49(4):718-726. https://doi.org/10.1111/j.1558-5646.1995.tb02308.x PMid: 28565131
Dexter K.G., Pennington T.D., Cunningham C.W. Using DNA to assess erors in tropical tree identifications: How often are ecologists wrong and when does it matter? Ecological Monographs 2010;80(2):267-286. https://doi.org/10.1890/09-0267.1
Liu Y., Cox C.J., Wang W., et al. Mitochondrial phylogenomics of early land plants: Mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Systematic Biology 2014;63(6):862-878. https://doi.org/10.1093/sysbio/syu049 PMid: 25070972
Bingpeng X., Heshan L., Zhilan Z., et al. DNA barcoding for identification of fish species in the Taiwan Strait. PloS One 2018;13(6):e0198109. https://doi.org/10.1371/journal.pone.0198109 PMid: 29856794
Hebert P.D., Bock D.G., Prosser S.W. Interrogating 1000 insect genomes for NUMTs: A risk assessment for estimates of species richness. PLoS One 2023;18(6):e0286620. https://doi.org/10.1371/journal.pone.0286620 PMid: 37289794
Song H., Buhay J.E., Whiting M.F., et al. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences 2008;105(36):13486-13491. https://doi.org/10.1073/pnas.0803076105 PMid: 18757756
Baeza J.A., Fuentes M.S. Exploring phylogenetic informativeness and nuclear copies of mitochondrial DNA (numts) in three commonly used mitochondrial genes: mitochondrial phylogeny of peppermint, cleaner, and semi-terrestrial shrimps (Caridea: Lysmata, Exhippolysmata, and Merguia). Zoological Journal of the Linnean Society 2013;168(4):699-722. https://doi.org/10.1111/zoj.12044
Ragan M.A., McInerney J.O., Lake J.A. The network of life: Genome beginnings and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 2009;364:2169-2175. https://doi.org/10.1098/rstb.2009.0046 PMid: 19571237
Jiang J., Yu J., Li J., et al. Mitochondrial genome and nuclear markers provide new insight into the evolutionary history of macaques. PLoS One 2016;11(5):e0154665. https://doi.org/10.1371/journal.pone.0154665 PMid: 27135608
Wolf J.B., Lindell J., Backström N. Speciation genetics: current status and evolving approaches. Philosophical Transactions of the Royal Society B: Biological Sciences 2010;365(1547):1717-1733. https://doi.org/10.1098/rstb.2010.0023 PMid: 20439277
Harris E.E., Disotell T.R. Nuclear gene trees and the phylogenetic relationships of the mangabeys (Primates: Papionini), Molecular Biology and Evolution 1998;15(7):892-900. https://doi.org/10.1093/oxfordjournals.molbev.a025993 PMid: 9656488
Barker F.K. Monophyly and relationships of wrens (Aves: Troglodytidae): A congruence analysis of heterogeneous mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution 2004;31(2):486-504. https://doi.org/10.1016/j.ympev.2003.08.005 PMid: 15062790
Tetteh M., de Lima A., McEllin J., et al. Evolving multi-output digital circuits using multi-genome grammatical evolution. Algorithms 2023;16(8):365. https://doi.org/10.3390/a16080365
Hoelzel A.R. Where to now with the evolutionarily significant unit? Trends in Ecology & Evolution 2023;38(12):1134-1142. https://doi.org/10.1016/j.tree.2023.07.005 PMid: 37596130
Garcia de Leaniz C., Fleming I., Einum S., et al. A critical review of adaptive genetic variation in Atlantic salmon: Implications for conservation. Biological reviews 2007;82(2):173-211. https://doi.org/10.1111/j.1469-185X.2006.00004.x PMid: 17437557
Theodoridis S., Patsiou T.S., Randin C., et al. Forecasting range shifts of a cold?adapted species under climate change: Are genomic and ecological diversity within species crucial for future resilience? Ecography 2018;41(8):1357-1369. https://doi.org/10.1111/ecog.03346
El-Regal M.A., Satheesh S. Biodiversity of Marine Ecosystems. Marine Ecosystems: A Unique Source of Valuable Bioactive Compounds 2023;3:1-42. https://doi.org/10.2174/9789815051995123030003
Kathiresan K., Bingham B.L. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 2001;40:81-251. https://doi.org/10.1016/S0065-2881(01)40003-4
Greenway R., Barts N., Henpita C., et al. Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proceedings of the National Academy of Sciences 2020;117(28):16424-16430. https://doi.org/10.1073/pnas.2016076117 PMid: 32817514
Zhang B., Zhang Y.H., Wang X., et al. The mitochondrial genome of a sea anemone Bolocera sp. exhibits novel genetic structures potentially involved in adaptation to the deep?sea environment. Ecology and Evolution 2017;7(13):4951-4962. https://doi.org/10.1002/ece3.3067 PMid: 28690821
Schiffer M., Kennington W., Hoffmann A., et al. Lack of genetic structure among ecologically adapted populations of an Australian rainforest Drosophila species as indicated by microsatellite markers and mitochondrial DNA sequences. Molecular Ecology 2007;16(8):1687-1700. https://doi.org/10.1111/j.1365-294X.2006.03200.x PMid: 17402983

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Electronic Journal of Biotechnology
