Selection and validation of stable reference genes in guava (Psidium guajava L.) for reliable and consistent gene expression analysis

Graphical abstract

Selection and validation of stable reference genes in guava (Psidium guajava L.) for reliable and consistent gene expression analysis
PDF
HTML

Keywords

Gene expression analysis
Guava
Housekeeping genes
Normalization
Psidium guajava L.
qRT-PCR
Reference genes
Selection
Validation

How to Cite

1.
Kumar S, Muthukumar M, Bajpai A, Bajpai Y, Singh A, Damodaran T, Kushwaha AK, Ahmad I, Trivedi M. Selection and validation of stable reference genes in guava (Psidium guajava L.) for reliable and consistent gene expression analysis. Electron. J. Biotechnol. [Internet]. 2025 May 15 [cited 2026 Jan. 26];75:49-56. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2437

Abstract

Background: Ideal stably expressing housekeeping gene to be used as internal control needs to be optimized for efficient gene expression analysis for accurate mRNA quantitation. In pursuit of identifying suitable reference genes for gene expression analysis in guava, a systematic study was conducted using different tissues of guava cv. Allahabad Safeda examining 10 housekeeping genes such as Actin (PgACT), Elongation factor 1G (PgEF1G), Elongation factor 2 (PgEF2), Tubulin (PgTUB1), Elongation factor 1 α (PgEF1a), Monensin sensitivity1 (PgMON1), Histone H3 (PgH3), RNA-binding protein 47 (PgRBP47), Polyubiquitin_X1 (PgPOLX1), and Polyubiquitin_X2 (PgPOLX2).

Results: qRT-PCR analysis showed amplification efficiencies ranging from 74.4% to 124.9%, with correlation coefficients exceeding 0.98. The stability of these genes’ expression was evaluated using six methods: GeNorm, NormFinder, BestKeeper, RefFinder, comparative delta-Ct, and Stability index in which different methods identified PgRBP47 as least stable and indicated its unsuitability as a reference gene but showed variations in the ranking of the genes for gene stability.

Conclusions: Comparison of all the methods and accounting for the top 3 ranks of gene stability, three genes i.e., PgTUB1, PgEF1a, and PgEF2 were identified as more stable housekeeping genes across different tissues of guava and could be considered as ideal reference genes for normalization in gene expression studies of guava.

https://doi.org/10.1016/j.ejbt.2025.01.006
PDF
HTML

References

Freitas FCP, Depintor TS, Agostini LT. et al. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Sci Rep. 2019;9:17692. https://doi.org/10.1038/s41598-019-53544-0 PMid: 31776359

Garg R, Sahoo A, Tyagi A, et al. Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem Biophys Res Commun 2010;396(2):283?288. https://doi.org/10.1016/j.bbrc.2010.04.079 PMid: 20399753

Van-de-Moosdijk A, Van-Amerongen R. Identification of reliable reference genes for qRT-PCR studies of the developing mouse mammary gland. Sci Rep 2016;6:35595. https://doi.org/10.1038/srep35595 PMid: 27752147

Zhou P, Huang L, Wang Y et al. Stepwise optimization of the RT-qPCR protocol and the evaluation of housekeeping genes in pears (Pyrus bretschneideri) under various hormone treatments and stresses. Horticulturae 2023;9(2):275. https://doi.org/10.3390/horticulturae9020275

Nguyen DQ, Nguyen NL, Nguyen VT, et al. Reliable reference genes for accurate gene expression profiling across different tissues and genotypes of rice seedlings (Oryza sativa L.) under salt stress. Russ J Plant Physiol 2023;70(5):104. https://doi.org/10.1134/S102144372360068X

Wang M, Bhullar NK. Selection of suitable reference genes for qRT-PCR gene expression studies in rice. In: Bandyopadhyay A, Thilmony R (eds) Rice genome engineering and gene editing. Methods in Molecular Biology New York: Humana; 2021;2238 p. 293-312. https://doi.org/10.1007/978-1-0716-1068-8_20 PMid: 33471340

Zhang L, Liu L, Cheng P. et al. Identification and validation of reference genes for RT?qPCR analysis in banana (Musa spp.) under Fusarium wilt resistance induction conditions. J Phytopathol 2017;165(11-12):746-754. https://doi.org/10.1111/jph.12614

Zhu L, Yang C, You Y et al. Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus domestica) at diverse stages of fruit development. Sci Hortic 2019;244:165-171. https://doi.org/10.1016/j.scienta.2018.09.033

Nocum JD, Manohar AN, Mendoza JV, et al. Identification of suitable internal control genes for gene expression analysis of banana in response to BBTV infection. Plant Gene 2022;32:100383. https://doi.org/10.1016/j.plgene.2022.100383

Kumar G, Singh AK. Reference gene validation for qRT-PCR based gene expression studies in different developmental stages and under biotic stress in apple. Sci Hortic, 2015;197:597-606. https://doi.org/10.1016/j.scienta.2015.10.025

Zhu L, Lin Y, Yang W et al. The identification of the banana endogenous reference gene MaSPS1 and the construction of qualitative and quantitative PCR detection methods. Genes 2023;14(12):2116. https://doi.org/10.3390/genes14122116 PMid: 38136937

Song Y, Hanner RH, Meng B. Genome-wide screening of novel RT-qPCR reference genes for study of GLRaV-3 infection in wine grapes and refinement of an RNA isolation protocol for grape berries. Plant Methods 2021;17:110. https://doi.org/10.1186/s13007-021-00808-4 PMid: 34711253

Wei TL, Wang H, Pei MS, et al. Identification of optimal and novel reference genes for quantitative real?time polymerase chain reaction analysis in grapevine. Aust J Grape Wine Res 2021;27(3):325-333. https://doi.org/10.1111/ajgw.12483

Zha Q, Xi X, Jiang A, et al. (2016). Identification of the appropriate reference gene through using a real-time quantitative PCR in grapes. J Fruit Sci 2016;33(3):268-274. https://doi.org/10.13925/j.cnki.gsxb.20150327

Ni J, Liao Y, Zhang M, et al. Blue light simultaneously induces peel anthocyanin biosynthesis and flesh Carotenoid/Sucrose biosynthesis in mango fruit. J Agric Food Chem 2022;70(50):16021-16035. https://doi.org/10.1021/acs.jafc.2c07137 PMid: 36484494

Hoang VL, Innes DJ, Shaw PN, et al. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics 2015;16:561. https://doi.org/10.1186/s12864-015-1784-x PMid: 26220670

Bajpai A, Khan K, Muthukumar M, et al. Molecular analysis of anthocyanin biosynthesis pathway genes and their differential expression in mango peel. Genome 2018;61(3):157–166. https://doi.org/10.1139/gen-2017-0205 PMid: 29338343

Hong K, Gong D, Xu H, et al. Effects of salicylic acid and nitric oxide pretreatment on the expression of genes involved in the ethylene signalling pathway and the quality of postharvest mango fruit. New Zeal J Crop Hort Sci 2014;42(3):205-216. https://doi.org/10.1080/01140671.2014.892012

Alghanem SM, Alnusairi GS, Alkhateeb MA, et al. Genome-wide identification and characterization of the dof gene family in mango (Mangifera indica L.). Genet Resour Crop Evol 2024;71:2749-2765. https://doi.org/10.1007/s10722-023-01767-6

Karanjalker GR, Ravishankar KV, Shivashankara KS, et al. A study on the expression of genes involved in carotenoids and anthocyanins during ripening in fruit peel of green, yellow, and red colored mango cultivars. Appl Biochem Biotechnol 2018;184(1):140–154. https://doi.org/10.1007/s12010-017-2529-x PMid: 28643121

Yao R, Huang X, Cong H, et al. Selection and identification of a reference gene for normalizing real-time PCR in mangos under various stimuli in different tissues. Horticulturae 2022;8(10):882. https://doi.org/10.3390/horticulturae8100882

Bai Y, Lv YN, Zeng M, et al. Selection of reference genes for normalization of gene expression in Thermobia domestica (Insecta: Zygentoma: Lepismatidae). Genes 2020;12(1):21. https://doi.org/10.3390/genes12010021 PMid: 33375665

Li X, Gong P, Wang B, et al. Selection and validation of experimental condition-specific reference genes for qRTPCR in Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Sci Rep 2020;10:21951. https://doi.org/10.1038/s41598-020-78974-z PMid: 33319828

Medina-Lozano I, Arnedo MS, Grimplet J, et al. Selection of novel reference genes by RNA-Seq and their evaluation for normalising Real-Time qPCR expression data of anthocyanin-related genes in lettuce and wild relatives. Int J Mol Sci 2023;24(3):3052. https://doi.org/10.3390/ijms24033052 PMid: 36769376

Sarwar MB, Ahmad Z, Anicet BA, et al. Identification and validation of superior housekeeping gene(s) for qRT-PCR data normalization in Agave sisalana (a CAM-plant) under abiotic stresses. Physiol Mol Biol Plants. 2020;26:567-584. https://doi.org/10.1007/s12298-020-00760-y PMid: 32205931

Expósito-Rodríguez M, Borges AA, Borges-Pérez A, et al. Selection of internal control genes for quantitative real-time RTPCR studies during tomato development process. BMC Plant Biol 2008;8:131. https://doi.org/10.1186/1471-2229-8-131 PMid: 19102748

Untergasser A, Cutcutache I, Koressaar T, et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. https://doi.org/10.1093/nar/gks596 PMid: 22730293

Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3(7):research 0034.1. https://doi.org/10.1186/gb-2002-3-7-research0034 PMid: 12184808

Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004;64(15):5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496 PMid: 15289330

Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 2004;26:509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47 PMid: 15127793

Silver N, Best S, Jiang J, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006;7:33. https://doi.org/10.1186/1471-2199-7-33 PMid: 17026756

Xie J, Alves AdS, von der Haar T, et al. Regulation of the elongation phase of protein synthesis enhances translation accuracy and modulates lifespan. Curr Biol 2019;29(5):737-749. https://doi.org/10.1016/j.cub.2019.01.029 PMid: 30773367

Brunner AM, Yakovlev IA, Strauss SH. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 2004;4:14. https://doi.org/10.1186/1471-2229-4-14 PMid: 15317655

Dean JD, Goodwin PH, Hsiang T. Comparison of relative RT-PCR and northern blot analyses to measure expression of ?-1,3-glucanase in Nicotiana benthamiana infected with Colletotrichum destructivum. Plant Mol Biol Rep 2002;20:347-356. https://doi.org/10.1007/BF02772122

Gutierrez L, Mauriat M, Guénin S, et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT- PCR) analysis in plants. Plant Biotechnol J 2008;6(6):609-618. https://doi.org/10.1111/j.1467-7652.2008.00346.x PMid: 18433420

Lorkovi? ZJ, Wieczorek Kirk DA, Klahre U, et al. RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells. RNA. 2000;(11):1610-1624. https://doi.org/10.1017/s1355838200001163 PMid: 11105760

Yan Y, Gan J, Tao Y, et al. RNA-Binding Proteins: The key modulator in stress granule formation and abiotic stress response. Front Plant Sci 2022;13:882596. https://doi.org/10.3389/fpls.2022.882596 PMid: 35783947

Weber C, Nover L, Fauth M. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J 2008;56(4):517-530. https://doi.org/10.1111/j.1365-313X.2008.03623.x PMid: 18643965

Czechowski T, Stitt M, Altmann T et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 2005;139(1):5-17. https://doi.org/10.1104/pp.105.063743 PMid: 16166256

Mallona I, Lischewski S, Weiss J, et al. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 2010;10:4. https://doi.org/10.1186/1471-2229-10-4 PMid: 20056000

Wan H, Zhao Z, Qian C, et al. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 2010;399(2):257-261. https://doi.org/10.1016/j.ab.2009.12.008 PMid: 20005862

Jiang Q, Wang F, Tan HW, et al. De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica. Mol Genet Genomics 2015;290:671-683. https://doi.org/10.1007/s00438-014-0953-y PMid: 25416420

Rebouças EdL, Costa JJdN, Passos MJ, et al. Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Braz Arch Biol Technol 2013;56:143-154. https://doi.org/10.1590/S1516-89132013000100019

Xie F, Wang J, Zhang B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct Integr Genomics 2023;23:125. https://doi.org/10.1007/s10142-023-01055-7 PMid: 37060478

Brönstrup M, Sasse F. Natural products targeting the elongation phase of eukaryotic protein biosynthesis. Nat Prod Rep. 2020;37(6):752-762. https://doi.org/10.1039/D0NP00011F PMid: 32428051

Xu B, Liu L, Song G. Functions and regulation of translation elongation factors. Front Mol Biosci 2022;8:816398. https://doi.org/10.3389/fmolb.2021.816398 PMid: 35127825

Lukash TO, Turkivska HV, Negrutskii BS, et al. Chaperone-like activity of mammalian elongation factor eEF1A: Renaturation of aminoacyl-tRNA synthetases. Int J Biochem Cell Biol. 2004;36(7):1341–1347. https://doi.org/10.1016/j.biocel.2003.11.009 PMid: 15109577

Novosylna O, Jurewicz E, Pydiura N, et al. Translation elongation factor eEF1A1 Is a novel partner of a multifunctional protein Sgt1. Biochimie 2015;119:137-145. https://doi.org/10.1016/j.biochi.2015.10.026 PMid: 26545799

Losada A, Muñoz-Alonso MJ, García C, et al. Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin. Sci 2016;6(1):35100. https://doi.org/10.1038/srep35100 PMid: 27713531

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Electronic Journal of Biotechnology