Efficient in vitro regeneration and genetic fidelity analysis of shea tree (Vitellaria paradoxa Gaertn) using ISSR markers

Graphical abstract

Efficient in vitro regeneration and genetic fidelity analysis of shea tree (Vitellaria paradoxa Gaertn) using ISSR markers
PDF
HTML

Keywords

Axillary shoot induction
Genetic ?delity analysis shea tree
Genetic homogeneity
In vitro regeneration
ISSR markers
Micropropagation
Root induction
Vitellaria paradoxa

How to Cite

1.
Attikora AJP, Silué S, Kone M, Silue N, Kwibuka Y, Yao SDM, Clerck CD, Him SL, Diarrassouba N, Alab T, Lassois L. Efficient in vitro regeneration and genetic fidelity analysis of shea tree (Vitellaria paradoxa Gaertn) using ISSR markers. Electron. J. Biotechnol. [Internet]. 2025 May 15 [cited 2026 Jan. 26];75:28-3. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2436

Abstract

Background: Shea tree is an economically valuable tree crop in the food, cosmetic, and pharmaceutical industries due to its seed oil, known as shea butter. Rapid propagation of superior shea trees through in vitro culture is essential to support domestication and conservation efforts. This study aimed to establish an efficient in vitro propagation protocol for the regeneration of shea true-to-type plantlets. Nodal explants were cultured on half-strength Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (BAP) and/or kinetin (Kin) combined with 1-naphthaleneacetic acid (NAA) for shoot induction. Rooting was tested on half- and quarter-strength MS and full- and half-strength modified MS (MS1B) media, enriched with indole-3-butyric acid (IBA) alone or combined with NAA, IAA, meta-topolin (mT), and putrescine. Genetic fidelity of regenerated plants was assessed using inter-simple sequence repeat (ISSR) markers.

Results: The results showed that MS/2 medium containing 3:1.2:1 mg/L BAP:Kin:NAA gave the best regeneration of axillary shoots. Four-week-old axillary shoots were 100% rooted on MS1B/2 medium containing 3:0.1:40 mg/mL IBA:mT:putrescine. Rooted plantlets were successfully acclimated in vivo. The polymorphism of the ISSR markers ranged from 50 to 87.5%, with an average of 65%, and the polymorphism information content was 0.22. For genetic fidelity assessment, 34 scorable and reproducible markers were obtained. All markers were monomorphic and identical to the mother plant.

Conclusions: The micropropagation protocol proposed in this study is suitable for large-scale in vitro regeneration of shea without genetic alteration. However, further studies are needed for the induction of multiple micros-hoots.

https://doi.org/10.1016/j.ejbt.2025.01.007
PDF
HTML

References

Boffa JM. Opportunities and challenges in the improvement of the shea (Vitellaria paradoxa) resource and its management. Occasional Paper 24. Nairobi: World Agroforestry Centre.

Choungo Nguekeng PB, Hendre P, Tchoundjeu Z, et al. The current state of knowledge of shea butter tree (Vitellaria paradoxa C.F. Gaertn.) for nutritional value and tree improvement in West and Central Africa. Forests 2021;12(12):1740. https://doi.org/10.3390/f12121740

Jasaw GS, Saito O, Gasparatos A, et al. Ecosystem services trade-offs from high fuelwood use for traditional shea butter processing in semi-arid Ghana. Ecosyst Serv 2017;27:127-38. https://doi.org/10.1016/j.ecoser.2017.09.003

Hale I, Ma X, Melo ATO, et al. Genomic resources to guide improvement of the shea tree. Front Plant Sci 2021;12:720670. https://doi.org/10.3389/fpls.2021.720670 PMid: 34567033

Shea Butter Market Size And Share | Industry Report, 2030 [Internet]. [cited 2025 Mar 20]. Available from: https://www.grandviewresearch.com/industry-analysis/shea-butter-market

Alui KA, Nafan D, Yao SDM. Carbon sequestration potential of shea trees (Vitellaria paradoxa C.F. Gaertn.) in Parklands under two soil types (ferralsol and cambisol) in Northern Côte d’Ivoire. Int J Sci 2020;9(02):14-23. https://doi.org/10.18483/ijSci.2265

Elias M. Influence of agroforestry practices on the structure and spatiality of shea trees (Vitellaria paradoxa C.F. Gaertn.) in central-west Burkina Faso. Agrofor Syst 2013;87(1):203-16. https://doi.org/10.1007/s10457-012-9536-2

IUCN. IUCN Red List of Threatened Species: Vitellaria paradoxa. IUCN Red List Threat Species [Internet]. 1998 Jan 1 [cited 2023 Sep 27]. Available from: https://www.iucnredlist.org/en

Attikora AJP, Diarrassouba N, Yao SDM, et al. Morphological traits and sustainability of plus shea trees (Vitellaria paradoxa C.F. Gaertn.) in Côte d’Ivoire. Biotechnol Agron Society Environ 2023;27(4):239-54. https://doi.org/10.25518/1780-4507.20462

Lovett PN, Haq N. Progress in developing in vitro systems for shea tree (Vitellaria paradoxa C.F. Gaertn.) propagation. For Trees Livelihoods 2013;22(1):60?9. https://doi.org/10.1080/14728028.2013.765092

Attikora AJP, Kouassi KA, Yao SDM, et al. Genome-wide association study of fat content and fatty acid composition of shea tree (Vitellaria paradoxa C.F. Gaertn subsp. paradoxa). BMC Genomics. 2025;26(1):164. https://doi.org/10.1186/s12864-025-11344-z

Sanou H, Picard N, Lovett PN, et al. Phenotypic variation of agromorphological traits of the shea tree, Vitellaria paradoxa C.F. Gaertn., in Mali. Genet Resour Crop Evol 2006;53(1):145?61. https://doi.org/10.1007/s10722-004-1809-9

Ræbild A, Larsen AS, Jensen JS, et al. Advances in domestication of indigenous fruit trees in the West African Sahel. New For 2011;41(3):297?315. https://doi.org/10.1007/s11056-010-9237-5

Frimpong EB, Kpogoh PK, Akuoko S. Vegetation propagation of shea, Kola and Allanblackia. Cocoa Res Inst, Ghana. Annual Report 1988;89:127-30.

Lovett PN, Azad AK, Paudyal K, et al. Genetic diversity and development of propagation techniques for tropical fruit trees. In: Smartt J, Haq N editors. Domestication, Production and Utilisation of New Crops 1996:286-7.

Yeboah J, Akrofi AY, Owusu-Ansah F. Influence of selected fungicides and hormone on the rooting success of Shea (Vitellaria paradoxa Gaertn) stem cuttings. Agric Biol JN Am 2010;1(3):313-20. https://doi.org/10.5251/abjna.2010.1.3.313.320

Amissah N, Akakpo B, Yeboah J, et al. Asexual propagation of sheanut tree (Vitellaria paradoxa C.F. Gaertn.) using a container layering technique. Am J Plant Sci. 2013;04(09):1758. https://doi.org/10.4236/ajps.2013.49216

Akakpo DB, Amissah N, Yeboah J, et al. Effect of indole 3-butyric acid and media type on adventitious root formation in shea nut tree (Vitellaria paradoxa C. F. Gaertn.) stem cuttings. Am J Plant Sci 2014;05(03):313-8. https://doi.org/10.4236/ajps.2014.53043

Yeboah J, Lowor S, Amoah F. The rooting performance of shea (Vitellaria paradoxa Gaertn) stem cuttings as influenced by wood type, sucrose and rooting hormone. Sci Res Essays 2009;4(1):521-5. https://doi.org/10.3923/jps.2009.10.14

Yao SDM, Diarrassouba N, Alui KA, et al. Effect of the grafting method on the recovery and growth of juvenile shea (Vitellaria paradoxa Gaertn C.F) plants grafted in nursery. East Afr Sch J Agric Life Sci 2020;3(12):406-14. https://doi.org/10.36349/easjals.2020.v03i12.005

Attikora AJP, Yao SDM, Dago DN, et al. Genetic diversity and population structure of superior shea trees (Vitellaria paradoxa subsp. paradoxa) using SNP markers for the establishment of a core collection in Côte d’Ivoire. BMC Plant Biol 2024;24(1):913. https://doi.org/10.1186/s12870-024-05617-0 PMid: 39350060

Afful NT, Abdulai I, Azu E, et al. In vitro regeneration of Vitellaria paradoxa from shoot tip explants. Biotechnologia 2022;103(1):71-9. https://doi.org/10.5114/bta.2022.113917 PMid: 36605379

Singh M, Sonkusale S, Niratker C, et al. Micropropagation of Shorea robusta: an economically important woody plant. J For Sci 2014;60(2):70-4. https://doi.org/10.17221/80/2013-JFS

Amghar I, Ibriz M, Ibrahimi M, et al. In vitro root induction from argan (Argania spinosa (L.) Skeels) adventitious shoots: influence of ammonium nitrate, auxins, silver nitrate and putrescine, and evaluation of plantlet acclimatization. Plants 2021;10(6):1062. https://doi.org/10.3390/plants10061062 PMid: 34073152

Bansal YK, Chibbar T. Micropropagation of Madhuca latifolia Macb. through nodal culture. Plant Biotechnol 2000;17(1):17-20. https://doi.org/10.5511/plantbiotechnology.17.17

Jordan M, Oyanedel E. Regeneration of Pouteria lucuma (Sapotaceae) plants in vitro. Plant Cell Tissue Organ Cult 1992;31(3):249-52. https://doi.org/10.1007/BF00036232

Purohit SD, Singhvi A. Micropropagation of Achras sapota through enhanced axillary branching. Sci Hortic 1998;76(3):219?29. https://doi.org/10.1016/S0304-4238(98)00144-7

Pijut PM, Beasley RR, Lawson SS, et al. In vitro propagation of tropical hardwood tree species - A review (2001–2011). Propag Ornam Plants 2012;12(1):25-51.

Afolabi JO, Olorode EM, Olomola DB, et al. Effects of different media strengths and hormone concentrations on in-vitro regeneration of Vitellaria paradoxa C.F. Gaertn. Niger J Biotechnol 2020;37(1):150-8. https://doi.org/10.4314/njb.v37i1.16

Fotso, Sanonne, Omokolo Ndoumou D, et al. Comparaison des premières étapes de l’embryogenèse somatique chez Baillonella toxisperma et Vitellaria paradoxa (Sapotacées). Biotechnol Agron Soc Env 2008;12(2):131-8.

Aisagbonhi EP, Isalar CE, Odenore VD, et al. The interplay between explant developmental stages and phytohormone type in callogenesis of shea tree (Vitellaria paradoxa C.F. Gaertn). Eur Int J Sci Technol 2015;4(7):50-7.

Aguwa I, Gana AS, Salaudeen MT, et al. Effect of different concentrations of plant growth hormones on callus induction and regeneration of Shea tree (Vitellaria paradoxa). Afr J Biotechnol 2022;21(7):334-41.

Adu-Gyamfi PKK, Barnor MT, Dadzie AM, et al. Preliminary investigation on somatic embryogenesis from immature cotyledon explants of shea (Vitellaria paradoxa G.). J Agric Sci Technol. 2012;2:1171-6.

Issali AE, Diarrassouba N, Nguessan EA, et al. Typology of seven Vitellaria paradoxa genotypes in relation to their response to callogenesis. International Journal of Application or Innovation in Engineering & Management 2013;2(2):160-9.

Manokari M, Mehta SR, Priyadharshini S, et al. Meta-Topolin mediated improved micropropagation, foliar micro-morphological traits, biochemical profiling, and assessment of genetic fidelity in Santalum album L. Ind Crops Prod 2021;171:113931. https://doi.org/10.1016/j.indcrop.2021.113931

El-Sayed M, Aly UI, Mohamed MS, et al. In vitro regeneration and molecular characterization of Jatropha curcas plant. Bull Natl Res Cent 2020;44(1):70. https://doi.org/10.1186/s42269-020-00320-0

Rohela GK, Jogam P, Saini P, et al. Assessing the genetic stability of in vitro raised plants. In: Gupta S, Chaturvedi P, editors. Commercial Scale Tissue Culture for Horticulture and Plantation Crops. Singapore: Springer Nature Singapore; 2022 p. 245-76. https://doi.org/10.1007/978-981-19-0055-6_11

Wu B, Zhang NS, Dixon B, et al. Reliable callus-induced plantlet regeneration from leaf explants of Lagerstroemia speciosa and genetic fidelity assessment through ISSR markers. Plant Cell Tissue Organ Cult 2024;157(3):76. https://doi.org/10.1007/s11240-024-02801-w

Savitikadi P, Jogam P, Rohela GK, et al. Direct regeneration and genetic fidelity analysis of regenerated plants of Andrographis echioides (L.) - An important medicinal plant. Ind Crops Prod 2020;155:112766. https://doi.org/10.1016/j.indcrop.2020.112766

Badhepuri MK, Beeravelli PR, Arolla RG, et al. Micropropagation and genetic fidelity analysis using SCoT and ISSR markers in Muehlenbeckia platyclada (F.Muell.) meisn. Plant Cell Tissue Organ Cult 2024;157(3):51. https://doi.org/10.1007/s11240-024-02763-z

Kudikala H, Jogam P, Sirikonda A, et al. In vitro micropropagation and genetic fidelity studies using SCoT and ISSR primers in Annona reticulata L.: An important medicinal plant. Vegetos 2020;33(3):446-57. https://doi.org/10.1007/s42535-020-00128-3

Serrote CML, Reiniger LRS, Silva KB, et al. Determining the polymorphism information content of a molecular marker. Gene 2020;726:144175. https://doi.org/10.1016/j.gene.2019.144175 PMid: 31726084

Kaur S, Panesar PS, Bera MB, et al. Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: A review. Crit Rev Food Sci Nutr 2015;55(1):419. https://doi.org/10.1080/10408398.2011.646363 PMid: 24915404

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 1962;15(3):473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Attikora AJP, Silué S, Yao SDM, et al. An innovative optimized protocol for high-quality genomic DNA extraction from recalcitrant Shea tree (Vitellaria paradoxa C.F. Gaertn) plant and its suitability for downstream applications. Mol Biol Rep 2024;51(1):171. https://doi.org/10.1007/s11033-023-09098-6 PMid: 38252378

Ilczuk A, Jacygrad E. In vitro propagation and assessment of genetic stability of acclimated plantlets of Cornus alba L. using RAPD and ISSR markers. Vitro Cell Dev Biol - Plant 2016;52(4):379-90. https://doi.org/10.1007/s11627-016-9781-6

Bell RL, Srinivasan C, Lomberk D. Effect of nutrient media on axillary shoot proliferation and preconditioning for adventitious shoot regeneration of pears. Vitro Cell Dev Biol – Plant 2009;45(6):708-14. https://doi.org/10.1007/s11627-009-9196-8

Dobránszki J, da Silva JAT. Micropropagation of apple - A review. Biotechnol Adv 2010;28(4):462-88. https://doi.org/10.1016/j.biotechadv.2010.02.008 PMid: 20188809

Shekhawat MS, Kannan N, Manokari M, et al. In vitro regeneration of shoots and ex vitro rooting of an important medicinal plant Passiflora foetida L. through nodal segment cultures. J Genet Eng Biotechnol 2015;13(2):209-14. https://doi.org/10.1016/j.jgeb.2015.08.002 PMid: 30647585

Arab MM, Yadollahi A, Shojaeiyan A, et al. Effects of nutrient media, different cytokinin types and their concentrations on in vitro multiplication of G×N15 (hybrid of almond×peach) vegetative rootstock. J Genet Eng Biotechnol 2014;12(2):81-7. https://doi.org/10.1016/j.jgeb.2014.10.001

Ashraf MF, Aziz MA, Kemat N, et al. Effect of cytokinin types, concentrations and their interactions on in vitro shoot regeneration of Chlorophytum borivilianum Sant. & Fernandez. Electron J Biotechnol 2014;17(6):275-9. https://doi.org/10.1016/j.ejbt.2014.08.004

Hausman JF, Gevers C, Gaspar T. Involvement of putrescine in the inductive rooting phase of poplar shoots raised in vitro. Physiol Plant 1994;92(2):201-6. https://doi.org/10.1111/j.1399-3054.1994.tb05327.x

Silva KB da, Reiniger LRS, Stefanel CM, et al. Sucrose and substrates on the acclimatization of micropropagated Luehea divaricata plants. Floresta Ambient 2020;27(1):e20171170. https://doi.org/10.1590/2179-8087.117017

Lone AB, Barbosa CM, Takahashi LSA, et al. Acclimatization of the Cattleya (Orchidaceae) in alternative substrates to tree fern fiber and sphagno. Acta Sci Agron 2008;30(4):465?9. https://doi.org/10.4025/actasciagron.v30i4.5299

Stefanello S, Silveira EV, Oliveira LK, et al. Efficiency of substrates on acclimatization of in vitro propagated Miltonia flavescens Lindl. Rev Em Agronegócios E Meio Ambiente 2009;2(3):467-76.

Zaytseva YG, Ambros EV, Novikova TI. Meta-topolin: Advantages and disadvantages for in vitro propagation. In: Ahmad N, Strnad M, editors. Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture. Singapore: Springer; 2021 p. 119-41. https://doi.org/10.1007/978-981-15-9046-7_11

Naaz A, Hussain SA, Anis M, et al. Meta-topolin improved micropropagation in Syzygium cumini and acclimatization to ex vitro conditions. Biol Plant 2019;63(1):174-82. https://doi.org/10.32615/bp.2019.020

Ahmad A, Ahmad N, Anis M. Preconditioning of nodal explants in thidiazuron-supplemented liquid media improves shoot multiplication in Pterocarpus marsupium (Roxb.). In: Ahmad N, Faisal M, editors. Thidiazuron: From Urea Derivative to Plant Growth Regulator. Singapore: Springer; 2018 p. 175-87. https://doi.org/10.1007/978-981-10-8004-3_8

Jena S, Ray A, Sahoo A, et al. High-frequency clonal propagation of Curcuma angustifolia ensuring genetic fidelity of micropropagated plants. Plant Cell Tissue Organ Cult 2018;135(3):473-86. https://doi.org/10.1007/s11240-018-1480-z

Yadav R, Yadav N, Kumar S. An improved micropropagation and assessment of genetic fidelity in multipurpose medicinal tree, Acacia auriculiformis. Proc Natl Acad Sci - India Sect B Biol Sci 2016;86(4):921-9. https://doi.org/10.1007/s40011-015-0550-9

Kaur H, Lekhak MM, Ochatt SJ, et al. Somatic embryogenesis and genetic homogeneity assessment of regenerated plants of Crinum brachynema (Amaryllidaceae): an endemic critically endangered medicinal plant. Plant Cell Tissue Organ Cult 2023;156(2):33. https://doi.org/10.1007/s11240-023-02625-0

Yadav R, Yadav N, Pal M, et al. Multiple shoot proliferation, bulblet induction and evaluation of genetic stability in Asiatic hybrid lily (Lilium sp.). Indian J Plant Physiol 2013;18(4):354-9. https://doi.org/10.1007/s40502-014-0060-4

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Electronic Journal of Biotechnology