Microbiological methodologies: Comparative evaluation of microbial community and enhanced antibiotic susceptibility testing

Graphical abstract

Microbiological methodologies: Comparative evaluation of microbial community and enhanced antibiotic susceptibility testing
PDF
HTML

Keywords

16S rRNA Sequencing
Antibiotic susceptibility testing
Antimicrobial resistance
Culturomics
Evaluation
Microbial community
Microbial profiling
Microbiological methodologies
Shotgun metagenomics

How to Cite

1.
Yakobi SH, Nwodo UU. Microbiological methodologies: Comparative evaluation of microbial community and enhanced antibiotic susceptibility testing. Electron. J. Biotechnol. [Internet]. 2025 Mar. 15 [cited 2026 Jan. 26];74:29-40. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2422

Abstract

Background: This study provides a comparative analysis of microbial community profiling and antibiotic susceptibility testing (AST) methodologies.

Microbial community profiling: Methods such as Shotgun Metagenomics and 16S rRNA sequencing were evaluated based on criteria including resolution, throughput, cost, and reproducibility. Shotgun Metagenomics was found to offer the highest resolution and detailed insights into microbial diversity, though at a higher cost and complexity. In contrast, 16S rRNA Sequencing provided a more cost-effective and high-throughput alternative, suitable for large-scale studies despite lower taxonomic resolution. Culturomics, while offering unique phenotypic data, showed variability in reproducibility and required more labor-intensive processes.

Antibiotic susceptibility testing (AST): Traditional methods such as disk diffusion and broth microdilution were compared to emerging molecular and automated AST technologies. Traditional methods were noted for their precision in determining minimum inhibitory concentrations (MICs), crucial for guiding effective antimicrobial therapy. However, the emerging methods provided faster turnaround times and higher throughput, which are increasingly important in clinical settings focused on antimicrobial stewardship.

Conclusions: The study underscores the importance of selecting appropriate methodologies based on specific research or clinical needs, balancing factors such as cost, sensitivity, and throughput. The integration of multiple methodologies is recommended to overcome the limitations of individual techniques, providing a more comprehensive understanding of microbial ecosystems and resistance profiles. These findings are crucial for enhancing both research and clinical practices, particularly in the context of the global challenge posed by antimicrobial resistance.

https://doi.org/10.1016/j.ejbt.2025.01.001
PDF
HTML

References

Kamel M, Aleya S, Alsubih M, et al. Microbiome dynamics: A paradigm shift in combatting infectious diseases. J Pers Med 2024;14(2):217. https://doi.org/10.3390/jpm14020217 PMid: 38392650

Wang H, Zhang W, Tang Y-W. Clinical microbiology in detection and identification of emerging microbial pathogens: past, present and future. Emerg Microbes Infect 2022;11(1):2579–89. https://doi.org/10.1080/22221751.2022.2125345 PMid: 36121351

Franco-Duarte R, ?ernáková L, Kadam S, et al. Advances in chemical and biological methods to identify microorganisms—From past to present. Microorganisms 2019;7(5):130. https://doi.org/10.3390/microorganisms7050130 PMid: 31086084

Yakobi SH, Magibile YB, Pooe OJ. A systematic review of Neisseria gonorrhoeae drug resistance development in South Africa. Braz J Microbiol 2024;55:1053–63. https://doi.org/10.1007/s42770-024-01281-6 PMid: 38662152

Yakobi SH, Pooe OJ. Antimicrobial resistance of Neisseria gonorrhoeae in Sub-Saharan Populations. Bacteria 2022;1(2):96–111. https://doi.org/10.3390/bacteria1020009

Jagadeesan B, Gerner-Smidt P, Allard MW, et al. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol 2019;79:96–115. https://doi.org/10.1016/j.fm.2018.11.005 PMid: 30621881

Nafea AM, Wang Y, Wang D, et al. Application of next-generation sequencing to identify different pathogens. Front Microbiol 2024;14:1329330. https://doi.org/10.3389/fmicb.2023.1329330 PMid: 38348304

Satam H, Joshi K, Mangrolia U, et al. Next-generation sequencing technology: Current trends and advancements. Biology 2023;12(7):997. https://doi.org/10.3390/biology12070997 PMid: 37508427

Yakobi SH, Mkhize S, Pooe OJ. Screening of antimicrobial properties and bioactive compounds of Pleurotus ostreatus extracts against Staphylococcus aureus, Escherichia coli, and Neisseria gonorrhoeae. Biochem Res Int 2023;2023:1777039. https://doi.org/10.1155/2023/1777039 PMid: 37101940

Shi Y, Wang G, Lau HC-H, et al. Metagenomic sequencing for microbial DNA in human samples: Emerging technological advances. Int J Mol Sci 2022;23(4):2181. https://doi.org/10.3390/ijms23042181 PMid: 35216302

Ogunrinola GA, Oyewale JO, Oshamika OO, et al. The human microbiome and its impacts on health. Int J Microbiol 2020;2020:8045646. https://doi.org/10.1155/2020/8045646 PMid: 32612660

Azaroual SE, Kasmi Y, Aasfar A, et al. Investigation of bacterial diversity using 16S rRNA sequencing and prediction of its functionalities in Moroccan phosphate mine ecosystem. Sci Rep 2022;12:3741. https://doi.org/10.1038/s41598-022-07765-5 PMid: 35260670

Lao H-Y, Wong LL-Y, Hui Y, et al. The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids. Front Microbiol 2024;14:1324494. https://doi.org/10.3389/fmicb.2023.1324494 PMid: 38264489

Madison JD, LaBumbard BC, Woodhams DC. Shotgun metagenomics captures more microbial diversity than targeted 16S rRNA gene sequencing for field specimens and preserved museum specimens. PLoS ONE 2023;18(9):e0291540. https://doi.org/10.1371/journal.pone.0291540 PMid: 37725594

Peterson D, Bonham KS, Rowland S, et al. Comparative analysis of 16S rRNA gene and metagenome sequencing in pediatric gut microbiomes. Front Microbiol 2021;12:670336. https://doi.org/10.3389/fmicb.2021.670336 PMid: 34335499

Zhang L, Chen F, Zeng Z, et al. Advances in metagenomics and its application in environmental microorganisms. Front Microbiol 2021;12:766364. https://doi.org/10.3389/fmicb.2021.766364 PMid: 34975791

Gajic I, Kabic J, Kekic D, et al. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics 2022;11(4):427. https://doi.org/10.3390/antibiotics11040427 PMid: 35453179

Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics 2019;9(2):49. https://doi.org/10.3390/diagnostics9020049 PMid: 31058811

Zhou M, Wang Y, Liu C, et al. Comparison of five commonly used automated susceptibility testing methods for accuracy in the China Antimicrobial Resistance Surveillance System (CARSS) hospitals. Infect Drug Resist 2018;11:1347–58. https://doi.org/10.2147/IDR.S166790 PMid: 30214255

Banerjee R, Patel R. Molecular diagnostics for genotypic detection of antibiotic resistance: current landscape and future directions. JAC-Antimicrob Resist 2022;5(1):dlad018. https://doi.org/10.1093/jacamr/dlad018 PMid: 36816746

Muntean MM, Muntean A-A, Preda M, et al. Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review). Exp Ther Med 2022;24:508. https://doi.org/10.3892/etm.2022.11435 PMid: 35837033

Yamin D, Uskokovi? V, Wakil AM, et al. Current and future technologies for the detection of antibiotic-resistant bacteria. Diagnostics 2023;13(20):3246. https://doi.org/10.3390/diagnostics13203246 PMid: 37892067

Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020;18:2401–15. https://doi.org/10.1016/j.csbj.2020.08.031 PMid: 33005303

Aggarwal N, Kitano S, Puah GRY, et al. Microbiome and human health: Current understanding, engineering, and enabling technologies. Chem Rev 2022;123(1):31–72. https://doi.org/10.1021/acs.chemrev.2c00431 PMid: 36317983

Bertolo A, Valido E, Stoyanov J. Optimized bacterial community characterization through full-length 16S rRNA gene sequencing utilizing MinION nanopore technology. BMC Microbiol 2024;24:58. https://doi.org/10.1186/s12866-024-03208-5 PMid: 38365589

Fadeev E, Cardozo-Mino MG, Rapp JZ, et al. Comparison of two 16S rRNA primers (V3–V4 and V4–V5) for studies of Arctic microbial communities. Front Microbiol 2021;12:637526. https://doi.org/10.3389/fmicb.2021.637526 PMid: 33664723

Weinroth MD, Belk AD, Dean C, et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies. J Anim Sci 2022;100(2):skab346. https://doi.org/10.1093/jas/skab346 PMid: 35106579

Church DL, Cerutti L, Gürtler A, et al. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clin Microbiol Rev 2020;33(4):e00053-19. https://doi.org/10.1128/CMR.00053-19 PMid: 32907806

Thomson KM, Dyer C, Liu F, et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: An international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect Dis 2021;21(12):1677–88. https://doi.org/10.1016/S1473-3099(21)00050-5 PMid: 34384533

Aguiar-Pulido V, Huang W, Suarez-Ulloa V, et al. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinforma Online 2016;12(Supp 1):5–16. https://doi.org/10.4137/EBO.S36436 PMid: 27199545

Mukherjee A, Reddy MS. Metatranscriptomics: An approach for retrieving novel eukaryotic genes from polluted and related environments. 3 Biotech 2020;10:71. https://doi.org/10.1007/s13205-020-2057-1 PMid: 32030340

Ojala T, Kankuri E, Kankainen M. Understanding human health through metatranscriptomics. Trends Mol Med 2023;29(5):376–89. https://doi.org/10.1016/j.molmed.2023.02.002 PMid: 36842848

Hempel CA, Wright N, Harvie J, et al. Metagenomics versus total RNA sequencing: Most accurate data-processing tools, microbial identification accuracy and perspectives for ecological assessments. Nucleic Acids Res 2022;50(1):9279–93. https://doi.org/10.1093/nar/gkac689 PMid: 35979944

Armengaud J. Metaproteomics to understand how microbiota function: The crystal ball predicts a promising future. Environ Microbiol 2023;25(1):115–25. https://doi.org/10.1111/1462-2920.16238 PMid: 36209500

Easterly CW, Sajulga R, Mehta S, et al. metaQuantome: An integrated, quantitative metaproteomics approach reveals connections between taxonomy and protein function in complex microbiomes. Mol Cell Proteomics MCP 2019;18:S82–91. https://doi.org/10.1074/mcp.RA118.001240 PMid: 31235611

Pietilä S, Suomi T, Elo LL. Introducing untargeted data-independent acquisition for metaproteomics of complex microbial samples. ISME Commun 2022;2(1):51. https://doi.org/10.1038/s43705-022-00137-0 PMid: 37938742

Hao C, Elias JE, Lee PKH, et al. metaSpectraST: An unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering. Microbiome 2023;11:176. https://doi.org/10.1186/s40168-023-01602-1 PMid: 37550758

Liu R, Bao Z-X, Zhao P-J, et al. Advances in the study of metabolomics and metabolites in some species interactions. Molecules 2021;26(11):3311. https://doi.org/10.3390/molecules26113311 PMid: 34072976

Trifonova OP, Maslov DL, Balashova EE, et al. Current state and future perspectives on personalized metabolomics. Metabolites 2023;13(1):67. https://doi.org/10.3390/metabo13010067 PMid: 36676992

Marchev AS, Vasileva LV, Amirova KM, et al. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci 2021;78:6487–503. https://doi.org/10.1007/s00018-021-03918-3 PMid: 34410445

Li Y-Q, Xin Y, Li C, et al. Metagenomics-metabolomics analysis of microbial function and metabolism in petroleum-contaminated soil. Braz J Microbiol 2023;54:935–47. https://doi.org/10.1007/s42770-023-01000-7 PMid: 37162704

Brown RW, Reay MK, Centler F, et al. Soil metabolomics - current challenges and future perspectives. Soil Biol Biochem 2024;193:109382. https://doi.org/10.1016/j.soilbio.2024.109382

Qiu S, Cai Y, Yao H, et al. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023;8:132. https://doi.org/10.1038/s41392-023-01399-3 PMid: 36941259

Ar?kan M, Muth T. Integrated multi-omics analyses of microbial communities: A review of the current state and future directions. Mol Omics 2023;19(8):607–23. https://doi.org/10.1039/D3MO00089C PMid: 37417894

Daliri EB-M, Ofosu FK, Chelliah R, et al. Challenges and perspective in integrated multi-omics in gut microbiota studies. Biomolecules 2021;11(2):300. https://doi.org/10.3390/biom11020300 PMid: 33671370

Wu J, Singleton SS, Bhuiyan U, et al. Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning. Front Mol Biosci 2023;10:1337373. https://doi.org/10.3389/fmolb.2023.1337373 PMid: 38313584

Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathog Basel Switz 2021;10(2):165. https://doi.org/10.3390/pathogens10020165 PMid: 33557078

Yakobi SH, Pooe OJ. Identification of emerging multidrug-resistant Neisseria gonorrhoeae isolates against five major antimicrobial agent options. Med Sci 2023;11(2):28. https://doi.org/10.3390/medsci11020028 PMid: 37092497

Tshabuse F, Buthelezi N, Folami AM, et al. Rapid detection of drug-resistant Escherichia coli by Vitek 2 compact system. Water SA 2022;48:450–6. https://doi.org/10.17159/wsa/2022.v48.i4.3941

Chen C, Hong W. Recent development of rapid antimicrobial susceptibility testing methods through metabolic profiling of bacteria. Antibiotics 2021;10:311. https://doi.org/10.3390/antibiotics10030311

Molineri AI, Camussone C, Zbrun MV, et al. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis: Systematic review and meta-analysis. Prev Vet Med 2021;188:105261. https://doi.org/10.1016/j.prevetmed.2021.105261 PMid: 33508662

Maugeri G, Lychko I, Sobral R, et al. Identification and antibiotic-susceptibility profiling of infectious bacterial agents: A review of current and future trends. Biotechnol J 2019;14(1):e1700750. https://doi.org/10.1002/biot.201700750 PMid: 30024110

Beviere M, Reissier S, Penven M, et al. The Role of Next-Generation Sequencing (NGS) in the management of tuberculosis: Practical review for implementation in routine. Pathogens 2023;12(8):978. https://doi.org/10.3390/pathogens12080978 PMid: 37623938

Kaprou GD, Bergšpica I, Alexa EA, et al. Rapid methods for antimicrobial resistance diagnostics. Antibiot 2021;10(2):209. https://doi.org/10.3390/antibiotics10020209 PMid: 33672677

Zhang K, Qin S, Wu S, et al. Microfluidic systems for rapid antibiotic susceptibility tests (ASTs) at the single-cell level. Chem Sci 2020;11:6352–61. https://doi.org/10.1039/D0SC01353F PMid: 34094102

Leshaba TMS, Mbelle NM, Osei Sekyere J. Current and emerging polymyxin resistance diagnostics: A systematic review of established and novel detection methods. J Appl Microbiol 2022;132:8–30. https://doi.org/10.1111/jam.15184 PMid: 34152057

Wang T, Liu H, Huang H, et al. Colistin monotherapy or combination for the treatment of bloodstream infection caused by Klebsiella pneumoniae: A systematic review and meta-analysis. BMC Infect Dis 2024;24:161. https://doi.org/10.1186/s12879-024-09024-6 PMid: 38317132

Bhatia M, Singh RI, Rani D, et al. Comparative evaluation of two automated ID/AST systems and mikrolatest kit in assessing the in vitro colistin susceptibility of carbapenem-resistant enterobacteriaceae isolates: A single-center exploratory study from North India. J Pharm Bioallied Sci 2022;14(1):52–5. https://doi.org/10.4103/jpbs.jpbs_651_21 PMid: 35784109

Li Y, Yang X, Zhao W. Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing. SLAS Technol 2017;22(6):585–608. https://doi.org/10.1177/2472630317727519 PMid: 28850804

Wang Y-H, Li Z, Wang L, et al. A systematic review and meta-analysis of genotypic methods for detecting antibiotic resistance in Helicobacter pylori. Helicobacter 2018;23(2):e12467. https://doi.org/10.1111/hel.12467 PMid: 29405526

Gaur P, Hada V, Rath RS, et al. Interpretation of antimicrobial susceptibility testing using European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) breakpoints: Analysis of agreement. Cureus 2023;15(3):e36977. https://doi.org/10.7759/cureus.36977

Lewis DA, Gumede LYE, van der Hoven LA, et al. Antimicrobial susceptibility of organisms causing community-acquired urinary tract infections in Gauteng Province, South Africa. South Afr Med J 2013;103(6):377–81. PMid: 23725955

Montes-Robledo A, Buelvas-Montes Y, Baldiris-Avila R. Description of extraintestinal pathogenic Escherichia coli based on phylogenetic grouping, virulence factors, and antimicrobial susceptibility. Iran J Microbiol 2023;15:503–12. https://doi.org/10.18502/ijm.v15i4.13504 PMid: 38045705

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Electronic Journal of Biotechnology