Enhancing Lactobacillus plantarum viability using novel chitosan-alginate-pectin microcapsules: Effects on gastrointestinal survival, weight management, and metabolic health

Graphical abstract

Enhancing Lactobacillus plantarum viability using novel chitosan-alginate-pectin microcapsules: Effects on gastrointestinal survival, weight management, and metabolic health
PDF
HTML

Keywords

Blood parameters
Chitosan-alginate-pectin microcapsules
Insulin regulation
Lactobacillus plantarum
Lipid profiles
Liver function
Microencapsulation
Obesity
Probiotics
Rat model
Weight management

How to Cite

1.
Shahriari M, Mobarez AM, Bazminabadi AT, Yaraki MT. Enhancing Lactobacillus plantarum viability using novel chitosan-alginate-pectin microcapsules: Effects on gastrointestinal survival, weight management, and metabolic health. Electron. J. Biotechnol. [Internet]. 2024 Nov. 15 [cited 2026 Jan. 26];72:20-8. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2412

Abstract

Background: Probiotics, like Lactobacillus plantarum, show promise in managing obesity, but delivery challenges hinder their effectiveness. This study explores the effects of NCAP microcapsules with L. plantarum on weight, lipids, liver function, and insulin in rats over eight weeks, enhancing the bacteria’s survivability through microencapsulation.

Results: NCAP microcapsules (10–15 μm, >79% survival) effectively protected L. plantarum. In rats, a high-fat diet with NCAP microcapsules (HFDC) significantly reduced body weight (176 g vs 179 g, p < 0.001), low-density lipoprotein (33 mg/dL vs 44 mg/dL, p < 0.001), and improved liver markers (aspartate transaminase 56 U/L vs 69 U/L, p = 0.008; alanine transaminase 36 U/L vs 38 U/L, p < 0.001). L. plantarum counts were notably higher in HFDC (870,963,590 CFU/g vs 14,454 CFU/g, p < 0.001).

Conclusions: NCAP microcapsules enhance L. plantarum survivability and improve weight, lipids, liver function, and insulin. This study addresses the need for effective probiotic delivery systems, offering insights into metabolic health promotion.

https://doi.org/10.1016/j.ejbt.2024.07.004
PDF
HTML

References

El-Saadony MT, Alagawany M, Patra AK, et al. The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology. 2021;117:36-52. https://doi.org/10.1016/j.fsi.2021.07.007 PMid: 34274422

Nguyen T, Kang J, Lee M. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology. 2007;113(3):358-61. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015 PMid: 17140690

van den Nieuwboer M, van Hemert S, Claassen E, et al. Lactobacillus plantarum WCFS 1 and its host interaction: A dozen years after the genome. Microbial Biotechnology. 2016;9(4):452-65. https://doi.org/10.1111/1751-7915.12368 PMid: 27231133

Wang J, Ji H, Zhang D, et al. Assessment of probiotic properties of Lactobacillus plantarum ZLP001 isolated from gastrointestinal tract of weaning pigs. African Journal of Biotechnology. 2011;10(54):11303-8. https://doi.org/10.5897/AJB11.255

Al-Ishaq RK, Skariah S, Büsselberg D. Bacteriophage treatment: Critical evaluation of its application on World Health Organization priority pathogens. Viruses. 2020;13(1):51. https://doi.org/10.3390/v13010051 PMid: 33396965

Zou Q, Zhao J, Liu X, et al. Microencapsulation of Bifidobacterium bifidum F?35 in reinforced alginate microspheres prepared by emulsification/internal gelation. International Journal of Food Science & Technology. 2011;46(8):1672-8. https://doi.org/10.1111/j.1365-2621.2011.02685.x

Dafe A, Etemadi H, Dilmaghani A, et al. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules. 2017;97:536-43. https://doi.org/10.1016/j.ijbiomac.2017.01.060 PMid: 28108413

Lai K, How Y, Pui L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. Journal of Microencapsulation. 2021;38(2):134-48. https://doi.org/10.1080/02652048.2020.1863490 PMid: 33306440

Karakas CY, Ordu HR, Bozkurt F, et al. Electrosprayed chitosan?coated alginate–pectin beads as potential system for colon?targeted delivery of ellagic acid. Journal of the Science of Food and Agriculture. 2022;102(3):965-75. https://doi.org/10.1002/jsfa.11430 PMid: 34302363

Fareez IM, Lim SM, Lim FT, et al. Microencapsulation of Lactobacillus sp. using chitosan?alginate?xanthan gum???cyclodextrin and characterization of its cholesterol reducing potential and resistance against pH, temperature and storage. Journal of Food Process Engineering. 2017;40(3):e12458. https://doi.org/10.1111/jfpe.12458

Vincekovic M, Jalsenjak N, Topolovec-Pintaric S, et al. Encapsulation of biological and chemical agents for plant nutrition and protection: Chitosan/alginate microcapsules loaded with copper cations and Trichoderma viride. Journal of Agricultural and Food Chemistry. 2016;64(43):8073-83. https://doi.org/10.1021/acs.jafc.6b02879 PMid: 27715032

Casadidio C, Peregrina DV, Gigliobianco MR, et al Chitin and chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Marine Drugs. 2019;17(6):369. https://doi.org/10.3390/md17060369 PMid: 31234361

Chen S, Zhao Q, Ferguson LR, et al. Development of a novel probiotic delivery system based on microencapsulation with protectants. Applied Microbiology and Biotechnology. 2012;93:1447-57. https://doi.org/10.1007/s00253-011-3609-4 PMid: 21975694

German SV, Bratashov DN, Navolokin NA, et al. In vitro and in vivo MRI visualization of nanocomposite biodegradable microcapsules with tunable contrast. Physical Chemistry Chemical Physics. 2016;18(47):32238-46. https://doi.org/10.1039/C6CP03895F PMid: 27849068

Cordero H, Guardiola FA, Tapia-Paniagua ST, et al. Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology. 2015;45(2):608-18. https://doi.org/10.1016/j.fsi.2015.05.010 PMid: 26003737

Tavlasoglu M, Ozkan G, Capanoglu E. Entrapment of black carrot anthocyanins by ionic gelation: Preparation, characterization, and application as a natural colorant in yoghurt. ACS Omega. 2022;7(36):32481-8. https://doi.org/10.1021/acsomega.2c03962 PMid: 36120039

Aprilia V, Murdiati A, Hastuti P, et al. Hydrogel derived from glucomannan-chitosan to improve the survival of Lactobacillus acidophilus FNCC 0051 in simulated gastrointestinal fluid. The Scientific World Journal. 2022;2022(1):362077. https://doi.org/10.1155/2022/7362077 PMid: 36571080

Kasra-Kermanshahi R, Fooladi J, Peymanfar S. Isolation and microencapsulation of Lactobacillus spp. from corn silage for probiotic application. Iran J Microbiol. 2010;2(2):98-102. PMid: 22347557

?anak I, Markov K, Melvan E, et al. Isolation and characterisation of L. plantarum O1 producer of plantaricin as potential starter culture for the biopreservation of aquatic food products. Food Technol Biotechnol. 2018;56(4):581-9. https://doi.org/10.17113/ftb.56.04.18.5707 PMid: 30923455

Levy MC, Andry MC, Rahmouni M, et al. Fourier-transform infrared spectroscopic studies of cross-linked human serum albumin microcapsules. 2. Influence of reaction time on spectra and correlation with microcapsule morphology and size. J Pharm Sci. 1994;83(3):419-22. https://doi.org/10.1002/jps.2600830331 PMid: 8207694

Ghaffarian R, Pérez?Herrero E, Oh H, et al. Chitosan–alginate microcapsules provide gastric protection and intestinal release of ICAM?1?targeting nanocarriers, enabling GI targeting in vivo. Advanced Functional Materials. 2016;26(20):3382-93. https://doi.org/10.1002/adfm.201600084 PMid: 27375374

Shoaei F, Heshmati A, Mahjub R, et al. The assessment of microencapsulated Lactobacillus plantarum survivability in rose petal jam and the changes in physicochemical, textural and sensorial characteristics of the product during storage. Sci Rep. 2022;12(1):6200. https://doi.org/10.1038/s41598-022-10224-w PMid: 35418196

Martoni CJ, Srivastava S, Damholt A, et al. Efficacy and dose response of Lactiplantibacillus plantarum in diarrhea-predominant irritable bowel syndrome. World J Gastroenterol. 2023;29(28):4451-65. https://doi.org/10.3748/wjg.v29.i28.4451 PMid: 37576702

Akhtar G, Bhat NA, Masoodi F, et al. Small-and large-scale production of probiotic foods, probiotic potential and nutritional benefits. In: Dhanasekaran D, Sankaranarayanan A, editors. Advances in Probiotics: Elsevier; 2021. p. 365-95. https://doi.org/10.1016/B978-0-12-822909-5.00023-X PMid: 32819235

Echegaray N, Yilmaz B, Sharma H, et al. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiological Research. 2023;268:127289. https://doi.org/10.1016/j.micres.2022.127289 PMid: 36571922

Terpou A, Papadaki A, Lappa IK, et al. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. 2019;11(7):1591. https://doi.org/10.3390/nu11071591 PMid: 31337060

Arenas-Jal M, Suñé-Negre J, García-Montoya E. An overview of microencapsulation in the food industry: Opportunities, challenges, and innovations. European Food Research and Technology. 2020;246:1371-82. https://doi.org/10.1007/s00217-020-03496-x

Manzoor A, Dar AH, Pandey VK, et al. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. International Journal of Biological Macromolecules. 2022;213:987-1006. https://doi.org/10.1016/j.ijbiomac.2022.06.044 PMid: 35705126

Xue J, Luo Y. Protein-polysaccharide nanocomplexes as nanocarriers for delivery of curcumin: A comprehensive review on preparation methods and encapsulation mechanisms. Journal of Future Foods. 2023;3(2):99-114. https://doi.org/10.1016/j.jfutfo.2022.12.002

Mart?u GA, Mihai M, Vodnar DC. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers. 2019;11(11):1837. https://doi.org/10.3390/polym11111837 PMid: 31717269

Plessas S. Advancements in the use of fermented fruit juices by lactic acid bacteria as functional foods: Prospects and challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum application. Fermentation. 2021;8(1):6. https://doi.org/10.3390/fermentation8010006

Rocchetti MT, Russo P, Capozzi V, et al. Bioprospecting antimicrobials from Lactiplantibacillus plantarum: Key factors underlying its probiotic action. International Journal of Molecular Sciences. 2021;22(21):12076. https://doi.org/10.3390/ijms222112076 PMid: 34769500

Leghari AA, Shahid S, Farid MS, et al. Beneficial aspects of probiotics, strain selection criteria and microencapsulation using natural biopolymers to enhance gastric survival: A review. Life Science Journal. 2021;18(1):30-47.

Wang X, Gao S, Yun S, et al. Microencapsulating alginate-based polymers for probiotics delivery systems and their application. Pharmaceuticals. 2022;15(5):644. https://doi.org/10.3390/ph15050644 PMid: 35631470

Brinques GB, Ayub MAZ. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. Journal of Food Engineering. 2011;103(2):123-8. https://doi.org/10.1016/j.jfoodeng.2010.10.006

Trabelsi I, Bejar W, Ayadi D, et al. Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. International Journal of Biological Macromolecules. 2013;61:36-42. https://doi.org/10.1016/j.ijbiomac.2013.06.035 PMid: 23817092

Jiang T, Kim YK, Singh B, et al. Effect of microencapsulation of Lactobacillus plantarum 25 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. J Nanosci Nanotechnol. 2013;13(8):5291-5. https://doi.org/10.1166/jnn.2013.7042 PMid: 23882756

Karaka? CY, Yildirim RM, Karadag A. Encapsulation of Lactobacillus plantarum ELB90 by electrospraying in a double emulsion (W1/O/W2) loaded alginate beads to improve the gastrointestinal survival and thermal stability. J Sci Food Agric. 2023;103(7):3427-36. https://doi.org/10.1002/jsfa.12494 PMid: 36764922

Mahmoud M, Abdallah NA, El-Shafei K, et al. Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon. 2020;6(3):e03541. https://doi.org/10.1016/j.heliyon.2020.e03541 PMid: 32190759

Elsherief MF, Devecioglu D, Saleh MN, et al. Chitosan/alginate/pectin biopolymer-based Nanoemulsions for improving the shelf life of refrigerated chicken breast. International Journal of Biological Macromolecules. 2024;264(part2):130213. https://doi.org/10.1016/j.ijbiomac.2024.130213 PMid: 38365158

Afzaal M, Saeed F, Ateeq H, et al. Effect of cellulose-chitosan hybrid-based encapsulation on the viability and stability of probiotics under simulated gastric transit and in kefir. Biomimetics. 2022;7(3):109. https://doi.org/10.3390/biomimetics7030109 PMid: 35997429

Kim Y, Oh S, Lee H, et al. Chitosan–Alginate–Pectin-coated Suspended-Liquid-Encapsulating (CAPSuLE) marbles for therapeutic agent storage and delivery. Biomaterials Science. 2021;9(5):1639-51. https://doi.org/10.1039/D0BM01504K PMid: 33432951

Tenjimbayashi M, Mouterde T, Roy PKK, et al. Liquid marbles: Review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. Nanoscale. 2023;15:18980-98. https://doi.org/10.1039/D3NR04966C PMid: 37990550

Afzaal M, Saeed F, Ateeq H, et al. Survivability of probiotics under hostile conditions as affected by prebiotic-based encapsulating materials. International Journal of Food Properties. 2022;25(1):2044-54. https://doi.org/10.1080/10942912.2022.2121836

Mooranian A, Negrulj R, Takechi R, et al. Alginate-combined cholic acid increased insulin secretion of microencapsulated mouse cloned pancreatic ? cells. Therapeutic Delivery. 2017;8(10):833-42. https://doi.org/10.4155/tde-2017-0042 PMid: 28944743

Tuch BE, Keogh GW, Williams LJ, et al. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care. 2009;32(10):1887-9. https://doi.org/10.2337/dc09-0744 PMid: 19549731

Song JJ, Tian WJ, Kwok L-Y, et al. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats. British Journal of Nutrition. 2017;118(7):481-92. https://doi.org/10.1017/S0007114517002380 PMid: 29017628

Yao C, Tian W, Song J, Wang J. Effect of microencapsulated Lactobacillus plantarum LIP-1 on cholesterol metabolism in hyperlipidaemic rats. 2019. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.2.14790/v1

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Electronic Journal of Biotechnology