Acetylcholinesterase inhibition exerted by the extract of Daldinia eschscholtzii, a marine fungus associated with the coral Siderastrea siderea: GC-MS analysis and molecular docking of identified compounds

Graphical abstract

Acetylcholinesterase inhibition exerted by the extract of Daldinia eschscholtzii, a marine fungus associated with the coral Siderastrea siderea: GC-MS analysis and molecular docking of identified compounds
PDF
HTML

Keywords

4,7-dihydroxycoumarin
Ligand-enzyme interactions
Acetylcholinesterase
AChE Inhibition
Bioprospecting
Coral-derived fungus
Daldinia eschscholtzii
GC-MS analysis
Marine fungus
Molecular docking
Siderastrea siderea

How to Cite

1.
Olivo-Flores KG, Couttolenc A, Suárez-Medellín J, Trigos Ángel, Espinoza C. Acetylcholinesterase inhibition exerted by the extract of Daldinia eschscholtzii, a marine fungus associated with the coral Siderastrea siderea: GC-MS analysis and molecular docking of identified compounds. Electron. J. Biotechnol. [Internet]. 2024 Nov. 15 [cited 2026 Jan. 26];72:12-9. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2410

Abstract

Background: Alzheimer’s disease is a neurodegenerative disease that has no cure. The drugs used to treat Alzheimer’s disease are based on the inhibition of the enzyme acetylcholinesterase (AChE). In this sense, marine fungal metabolites represent an alternative source for the discovery of drugs based on AChE inhibition (IAChE). The present research carried out a bioprospecting study of marine fungi with acetylcholinesterase inhibition potential.

Results: A total of 17 marine fungi were isolated from three stony corals from the Veracruz Reef System. The fungal genera identified were Geotrichum, Curvularia, Penicillium, Aspergillus, and Daldinia. The IAChE was evaluated from the broth and biomass extracts of each fungal strain. As a result, Daldinia eschscholtzii was one of the three fungi with the greatest IAChE effect (32.7%). Subsequently, a bio-directed chromatographic purification of the methanolic extract of the biomass of D. eschscholtzii was carried out. The FRL8.1 fraction was the most active with an IAChE of 41.0%, a value close to Galantamine positive control (44.0%). Furthermore, compound analysis was carried out by GC-MS. Finally, it was determined that the metabolites responsible for the inhibitory effect are probably 4,7-dihydroxycoumarin and 5-nitro-2-naphthalenamine, which was demonstrated by their interactions with the AChE enzyme receptor through molecular docking studies.

Conclusions: Coral-associated marine fungi produce secondary metabolites that inhibit acetylcholinesterase. This is the first report of D. eschscholtzii isolated from the stony coral Siderastrea siderea. Finally, we consider that more studies are needed to demonstrate the IAChE potential of marine fungi associated with corals or other marine organisms.

https://doi.org/10.1016/j.ejbt.2024.08.001
PDF
HTML

References

El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021;7(3):e06362. https://doi.org/10.1016/j.heliyon.2021.e06362 PMid: 33869822

Gladfelter AS, James TY, Amend AS. Marine fungi. Curr Biol 2019;2986):R191–5. https://doi.org/10.1016/j.cub.2019.02.009 PMid: 30889385

Hafez Ghoran S, Taktaz F, Ayatollahi SA, Kijjoa A. Anthraquinones and their analogues from marine-derived fungi: Chemistry and biological activities. Mar Drugs 2022;20(8):474. https://doi.org/10.3390/md20080474 PMid: 35892942

Wang Z, Qader M, Wang Y, et al. Progress in the discovery of new bioactive substances from deep-sea associated fungi during 2020-2022. Front Mar Sci 2023;10:1232981. https://doi.org/10.3389/fmars.2023.1232891

Jiang M, Wu Z, Guo H, et al. A review of terpenes from marine-derived fungi: 2015–2019. Mar Drugs 2020;18(6):321. https://doi.org/10.3390/md18060321 PMid: 32570903

Youssef FS, Ashour ML, Singab ANB, et al. A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar Drugs 2019;17(10):559. https://doi.org/10.3390/md17100559 PMid: 31569458

Yin Q, Liu X, Zhang Z, et al. Chemistry and bioactivities of alkaloids isolated from marine fungi (covering 2016–2022). Fitoterapia 2023;164:105377. https://doi.org/10.1016/j.fitote.2022.105377 PMid: 36544299

Wang C, Lu H, Lan J, Zaman KHA, Cao S. A Review: Halogenated compounds from marine fungi. Molecules 2021;26(2):458. https://doi.org/10.3390/molecules26020458 PMid: 33467200

Sallam A, El-Metwally M, Sabry MA, et al. Cladamide: a new ceramide from the endophytic fungus Cladosporium cladosporioides. Nat Prod Res 2023;37(7):1082–91. https://doi.org/10.1080/14786419.2021.1986709 PMid: 34622719

Alves AJS, Pereira JA, Dethoup T, et al. A new meroterpene, a new benzofuran derivative and other constituents from cultures of the marine sponge-associated fungus Acremonium persicinum KUFA 1007 and their anticholinesterase activities. Mar Drugs 2019;17(6):379. https://doi.org/10.3390/md17060379 PMid: 31242631

Hafez Ghoran S, Kijjoa A. Marine-derived compounds with anti-Alzheimer’s disease activities. Mar Drugs 2021;19(8):410. https://doi.org/10.3390/md19080410 PMid :34436249

Hafez Ghoran S, Taktaz F, Sousa E, et al. Peptides from marine-derived fungi: Chemistry and biological activities. Mar Drugs 2023;21(10):510. https://doi.org/10.3390/md21100510 PMid: 37888445

Takahashi JA, Sande D, da Silva Lima G, et al. Fungal metabolites as promising new drug leads for the treatment of Alzheimer’s disease. In: Atta-ur-Rahman (editor), Studies in Natural Products Chemistry, Elsevier; 2019, vol. 62, p. 1–39. https://doi.org/10.1016/B978-0-444-64185-4.00001-0

Ellman GL, Courtney KD, Andres V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9 PMid: 13726518

Franceschy C, Espinoza C, Padrón JM, et al. Antiproliferative potential of 3?,5?,6?,7?-tetrahydroxyergosta-8(14),22-diene produced by Acremonium persicinum isolated from an alkaline crater lake in Puebla, Mexico. Nat Prod Res 2021;35:2895–8. https://doi.org/10.1080/14786419.2019.1669032 PMid: 31556322

Stadler M, Læssøe T, Fournier J, et al. A polyphasic taxonomy of Daldinia (Xylariaceae). Stud Mycol 2014;77(1):1–143. https://doi.org/10.3114/SIM0016. https://doi.org/10.3114/sim0016 PMid: 24790283

Espinoza C, Couttolenc A, Fernández JJ, et al. Brefeldin-A: An antiproliferative metabolite of the fungus Curvularia trifolii collected from the Veracruz Coral Reef System, Mexico. J Mex Chem Soc 2016;60(2):79–82. https://doi.org/10.29356/jmcs.v60i2.77

Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 2004;25(13):1605–12. https://doi.org/10.1002/jcc.20084 PMid: 15264254

Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012;4:17. https://doi.org/10.1186/1758-2946-4-17 PMid: 2288933

Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334 PMid: 19499576

Franklin MC, Rudolph MJ, Ginter C, et al. Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Proteins Struct Funct Bioinforma 2016;84(9):1246–56. https://doi.org/10.1002/prot.25073 PMid: 27191504

Stierand K, Maaß PC, Rarey M. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 2006;22(14):1710–6. https://doi.org/10.1093/bioinformatics/btl150 PMid: 16632493

RStudio Team. RStudio: Integrated Development for R. RStudio 2020.

Crous PW, Verkley GJM, Groenewald JZ, et al. Fungal Biodiversity. Nederland: Westerdijk Laboratory Manual Series No. 1 2009, 269 p.

Xu F, Chen W, Ye Y, et al. A new quinolone and acetylcholinesterase inhibitors from a sponge-associated fungus Penicillium sp. SCSIO41033. Nat Prod Res 2023;37(7):2871–7. https://doi.org/10.1080/14786419.2022.2139694 PMid: 36318871

Hamed AA, El-Shiekh RA, Mohamed OG, et al. Cholinesterase Inhibitors from an Endophytic Fungus Aspergillus niveus Fv-er401: Metabolomics, Isolation and Molecular Docking. Molecules 2023;28:2559. https://doi.org/10.3390/molecules28062559 PMid: 36985531

Hu M, Yang X-Q, Zhou Q-Y, et al. Benzopyran derivatives from endophytic Daldinia eschscholzii JC-15 in Dendrobium chrysotoxum and their bioactivities. Nat Prod Res 2019;33(10):1431–5. https://doi.org/10.1080/14786419.2017.1419236 PMid: 29272956

Wang BY, Yang YB, Yang XQ, et al. Inducing secondary metabolite production from Daldinia eschscholzii JC-15 by red ginseng medium. Nat Prod Res 2020;34:3101–7. https://doi.org/10.1080/14786419.2019.1610751 PMid: 31111733

Passarini MRZ, Santos C, Lima N, et al Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum. Arch Microbiol 2013;195:99–111. https://doi.org/10.1007/s00203-012-0854-6 PMid: 23179657

Sibero MT, Zhou T, Igarashi Y, Radjasa K, Sabdono A, Trianto A, et al. Chromanone-type compounds from marine sponge-derived Daldinia eschscholtzii KJMT FP 4.1. J Appl Pharm Sci 2020;10:1–7. https://doi.org/10.7324/JAPS.2020.101001

Tarman K, Palm GJ, Porzel A, Merzweiler K, Arnold N, Wessjohann LA, et al. Helicascolide C, a new lactone from an Indonesian marine algicolous strain of Daldinia eschscholzii (Xylariaceae, Ascomycota). Phytochem Lett 2012;5:83–6. https://doi.org/10.1016/j.phytol.2011.10.006

Kandou FEF, Mangindaan REP, Rompas RM, Simbala HI. Molecular identification and antibacterial activity of marine-endophytic fungi isolated from sea fan Annella sp. from Bunaken waters, Manado, North Sulawesi, Indonesia. AACL Bioflux 2021;14(1):317-27.

Hu Z-X, Xue Y-B, Bi X-B, et al. Five new secondary metabolites produced by a marine-associated fungus, Daldinia eschscholzii. Mar Drugs 2014;12(11):5563–75. https://doi.org/10.3390/md12115563 PMid: 25419997

Kongyen W, Rukachaisirikul V, Phongpaichit S, et al. A new hydronaphthalenone from the mangrove-derived Daldinia eschscholtzii PSU-STD57. Nat Prod Res 2015;29(21):1995–9. https://doi.org/10.1080/14786419.2015.1022542 PMid: 25776658

Wang G, Yin Z, Wang S, et al. Diversified polyketides with anti-inflammatory activities from mangrove endophytic fungus Daldinia eschscholtzii KBJYZ-1. Front Microbiol 2022;13:1454. https://doi.org/10.3389/fmicb.2022.900227 PMid: 35620105

Liao H-X, Zheng C-J, Huang G-L, et al. Bioactive polyketide derivatives from the mangrove-derived fungus Daldinia eschscholtzii HJ004. J Nat Prod 2019;82(8):2211–9. https://doi.org/10.1021/acs.jnatprod.9b00241 PMid:31373815

Pandey A, Banerjee D. Daldinia bambusicola Ch4/11 an endophytic fungus producing volatile organic compounds having antimicrobial and olio chemical potential. J Adv Microbiol 2015;1(6):330–7. https://doi.org/10.5530/jam.1.6.4

Chutulo E. Daldinia eschscholtzii: An endophytic fungus isolated from Psidium guajava as an alternative source of bioactive secondary metabolites. Asian J Mycol 2020;3:376–98.

Pažoutová S, Follert S, Bitzer J, et al. A new endophytic insect-associated Daldinia species, recognised from a comparison of secondary metabolite profiles and molecular phylogeny. Fungal Divers 2013;60:107–23. https://doi.org/10.1007/s13225-013-0238-5

Goswami S, Rahman I, Kishor S, et al. Evaluation of antibacterial potential of Daldinia concentrica from North Eastern Region of India. Def Life Sci J 2020;5(2):74–9. https://doi.org/10.14429/dlsj.5.15564

Luo Y, Huang Y, Yuan X, et al. Evaluation of fatty acid composition and antioxidant activity of wild-growing mushrooms from Southwest China. Int J Med Mushrooms 2017;19(10):937–47. https://doi.org/10.1615/IntJMedMushrooms.2017024388 PMid: 29256847

Stadler M, Wollweber H, Mühlbauer A, et al. Molecular chemotaxonomy of Daldinia and other Xylariaceae. Mycol Res 2001;105(10):1191–205. https://doi.org/10.1016/S0953-7562(08)61990-5

Ibrahim SRM, Mohamed GA. Naturally occurring naphthalenes: chemistry, biosynthesis, structural elucidation, and biological activities. Phytochem Rev 2016;15:279–95. https://doi.org/10.1007/s11101-015-9413-5

Zhou Y, Wang S, Zhang Y. Catalytic Reaction mechanism of acetylcholinesterase determined by Born?Oppenheimer ab initio QM/MM molecular dynamics simulations. J Phys Chem B 2010;114(26):8817–25. https://doi.org/10.1021/jp104258d PMid: 20550161

Anand P, Singh B, Singh N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 2012;20(3):1175–80. https://doi.org/10.1016/j.bmc.2011.12.042 PMid: 22257528

Tsivileva OM, Koftin O V., Evseeva N V. Coumarins as fungal metabolites with potential medicinal properties. Antibiotics 2022;11(9):1156. https://doi.org/10.3390/antibiotics11091156 PMid: 36139936

Carrasco-Carballo A, Mendoza-Lara DF, Rojas-Morales JA, et al. In silico Study of coumarins derivatives with potential use in systemic diseases. Biointerface Res Appl Chem 2022;13(3):240. https://doi.org/10.33263/BRIAC133.240

Costa TM, Tavares LBB, de Oliveira D. Fungi as a source of natural coumarins production. Appl Microbiol Biotechnol 2016;100:6571–84. https://doi.org/10.1007/s00253-016-7660-z PMid: 27364626

Karrouchi K, Radi S, Ramli Y, et al. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules 2018;23(1):134. https://doi.org/10.3390/molecules23010134 PMid: 29329257

Turkan F, Cetin A, Taslimi P, et al. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem 2019;86:420–7. https://doi.org/10.1016/j.bioorg.2019.02.013 PMid: 30769267

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Electronic Journal of Biotechnology