QTL analysis of low-temperature tolerance in maize germination by SLAF-seq and BSA technique

Graphical abstract

QTL analysis of low-temperature tolerance in maize germination by SLAF-seq and BSA technique
PDF
HTML

Keywords

Bulked Segregant Analysis (BSA)
Germination
Low temperature tolerance
Maize
QTL analysis
Specific-Locus Amplified Fragment-sequencing (SLAF-seq)
Stress

Categories

How to Cite

1.
Yu T, Zhang J, Cao J, Ma X, Cao S, Li W, Yang G, Li S. QTL analysis of low-temperature tolerance in maize germination by SLAF-seq and BSA technique. Electron. J. Biotechnol. [Internet]. 2024 Jul. 15 [cited 2026 Jan. 26];70:14-22. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2386

Abstract

Background: Cold damage of maize during germination is a global problem; it occurs frequently in northeast China, and leads to a large-scale reduction in yield. Low temperature tolerance of maize in germination is a complex quantitative trait controlled by multigenes, and no major QTLs or key genes have been identified.

Results: An F2 isolation population with S319 and R144 as parents was constructed. The bulked segregant analysis (BSA) and specific-locus amplified fragment-sequencing (SLAF-seq) methods were applied to locate the chromosomal association regions related to low-temperature tolerance of maize during germination. Sequencing obtained 221.72 Gbp clean data, with an average sequencing depth of 25.96X. Four candidate regions associated with low-temperature tolerance trait of maize in germination were obtained, with a total length of 25.71 Mb and 1513 annotated genes, including 456 nonsynonymous mutant genes and 111 frameshift mutant genes.

Conclusions: This study aimed to lay the foundation for the mining of candidate genes of low-temperature tolerance in maize during germination, and accelerate the process of targeted improvement of maize low-temperature tolerance molecular marker-assisted breeding.

https://doi.org/10.1016/j.ejbt.2024.04.003
PDF
HTML

References

Arnold CY. Predicting stages of sweet corn (Zea mays L.) development. J Am Soc Hortic Sci 1974;99(6):501-505. https://doi.org/10.21273/JASHS.99.6.501

Oláh C, Ludmerszki E, Rácz I, et al. S-methylmethionine-salicylate pretreatment reduces low temperature stress in maize. Russian Journal of Plant Physiology 2018;65(1):63-68. https://doi.org/10.1134/S102144371801017X

Wang Y, Li J, Gu W, et al. Exogenous application of 5-aminolevulinic acid improves low temperature stress tolerance of maize seedings. Crop and Pasture Science 2018;69(6):587-593. https://doi.org/10.1071/CP17401

Li Z, Hu GH, Liu XF, et al. Transcriptome sequencing identified genes and gene ontologies associated with early freezing tolerance in maize. Frontiers in Plant Science 2016;7:1477. https://doi.org/10.3389/fpls.2016.01477 PMid: 27774095.

Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal 2016;14(10):1941-1955. https://doi.org/10.1111/pbi.12559 PMid: 26990124

Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 1991;88(21):9828-9832. https://doi.org/10.1073/pnas.88.21.9828 PMid: 1682921.

Sun Y, Wang J, Crouch JH, et al. Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 2010;26(3):493-511. https://doi.org/10.1007/s11032-010-9390-8

Hayes AJ and Saghai Maroof A. Targeted resistance gene mapping in soybean using modified AFLPs. Thore. Appl. Genet 2000;100(8):1279-1283. https://doi.org/10.1007/s001220051435

Chen Y, Meng QC, Yuan JH. Identification of molecular markers linked to the MRDV-resistance locus in maize using SSR-BSA technique. Jiangsu Journal of Agricultural Sciences 2008; 24(5): 590-594.

Liu Y; Chen QJ, Qu YY, et al. Molecular markers of screening of the disease-resistance gene of cotton using SRAP-BSA technique. Xinjiang Agricultural Sciences 2009; 46(6):1158-1163.

Boopathi NM, Swapnashri G, Kavitha P, et al. Evaluation and bulked segregant analysis of major yield QTL qtl12.1 introgressed into indigenous elite line for low water availability under water stress. Rice Sci 2013;20(1):25-30. https://doi.org/10.1016/S1672-6308(13)60104-3

Ghazvini H, Hiebert CW, Thomas JB, et al. Development of a multiple bulked segregant analysis (MBSA) method used to locate a new stem rust resistance gene (Sr54) in the winter wheat cultivar Norin 40. Theor Appl Genet 2013;126(2):443-449. https://doi.org/10.1007/s00122-012-1992-6 PMid: 23052026

Yang Z, Huang D, Tang W, et al. Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLOS ONE 2013;8(7):e68433. https://doi.org/10.1371/journal.pone.0068433 PMid: 23935868

Takagi H, Abe A, Yoshida K, et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 2013;74(1):174-183. https://doi.org/10.1111/tpj.12105 PMid: 23289725

Meng YL, Huang YH, Wang QH, et al. Phenotypic and genetic characterization of resistance in Arabidopsis thaliana to the oomycete pathogen Phytophthora parasitica. Frontiers in Plant Science 2015;6:378. https://doi.org/10.3389/fpls.2015.00378 PMid: 26074940.

Zhao Y, Sun Y, Cao K, et al. Combined use of specific length amplified fragment sequencing (SLAF-seq) and bulked segregant analysis (BSA) for rapid identification of genes influencing fiber content of hemp (Cannabis sativa L). BMC Plant Biol 2022;22(1):250. https://doi.org/10.1186/s12870-022-03594-w PMid: 35596150

Zhou Y, Yao M, Wang Q, et al. Analysis of QTLs and candidate genes for tassel symptoms in maize infected with Sporisorium reilianum. Int J Mol Sci 2022;23(22):14416. https://doi.org/10.3390/ijms232214416 PMid: 3643089

Zhu Y, Ren Y, Liu J, et al. New genes identified as modulating salt tolerance in maize seedlings using the combination of transcriptome analysis and BSA. plants (Basel) 2023;12(6):1331. https://doi.org/10.3390/plants12061331 PMid: 36987019

Wang X, Shi Z, Zhang R, et al. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biol 2020;20(1):515. https://doi.org/10.1186/s12870-020-02728-2 PMid: 33176702

Luo XD, Liu J, Zhao J, et al. Rapid mapping of candidate genes for cold tolerance in, Oryza rufipogon, Griff. by QTL-seq of seedlings. Journal of Integrative Agriculture 2018;17(2):265-275. https://doi.org/10.1016/S2095-3119(17)61712-X

Han J, Han D, Guo Y, et al. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theor Appl Genet 2019;132(8):2253-2272. https://doi.org/10.1007/s00122-019-03352-x PMid: 31161230

Xu Y, Lu Y, Xie C, et al. Whole-genome strategies for marker-assisted plant breeding. Mol Breed 2012b; 29(4): 833-854. https://doi.org/10.1007/s11032-012-9724-9.

Huang L, Tang W, Wu W. Optimization of BSA-seq experiment for QTL mapping. G3 Genes|Genomes|Genetics 2022;12(1):jkab370. https://doi.org/10.1093/g3journal/jkab370 PMid: 34791194

Yan J, Warburton M, Crouch J. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 2011;51(2):433-449. https://doi.org/10.2135/cropsci2010.04.0233

Gallais A, Moreau L; Charcosset A. Detection of marker-QTL associations by studying change in marker frequencies with selection. Theor Appl Genet 2007;114(4):669-681. https://doi.org/10.1007/s00122-006-0467-z PMid: 17165081

Navabi A, Mather DE, Bernier J, et al. QTL detection with bidirectional and unidirectional selective genotyping: marker-based and trait-based analyses. Theor Appl Genet 2009;118(2):347-358. https://doi.org/10.1007/s00122-008-0904-2 PMid: 18854970

Paterson AH, Lander ES, Hewitt JD, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 1988;335(6192):721-726. https://doi.org/10.1038/335721a0 PMid: 2902517

Xu Y. Molecular dissection of complex traits: Practice. In: Molecular Plant Breeding, Wallingford, UK: CABI. 2010:249-285. https://doi.org/10.1079/9781845933920.0249

Magwene PM, Willis JH, Kelly JK. The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 2011;7(11):e1002255. https://doi.org/10.1371/journal.pcbi.1002255 PMid: 22072954

Majeed A, Johar P, Raina A, et al. Harnessing the potential of bulk segregant analysis sequencing and its related approaches in crop breeding. Front Genet 2022;13:944501. https://doi.org/10.3389/fgene.2022.944501 PMid: 36003337

Jia X, Wang S, Zhao H, et al. QTL mapping and BSA-seq map a major QTL for the node of the first fruiting branch in cotton. Front Plant Sci 2023;14:1113059. https://doi.org/10.3389/fpls.2023.1113059 PMid: 36760643

Liu Y, Chen P, Li W, et al. Conjunctive analyses of BSA-seq and BSR-seq to identify candidate genes controlling the black lemma and pericarp trait in barley. Int J Mol Sci 2023;24(11):9473. https://doi.org/10.3390/ijms24119473 PMid: 37298424

Win KT, Vegas J, Zhang C, et al. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor Appl Genet 2017;130(1):199-211. https://doi.org/10.1007/s00122-016-2806-z PMid: 27714417.

Klein H, Xiao Y, Conklin PA, et al. Bulked-segregant analysis coupled to whole genome sequencing (BSA-seq) for rapid gene cloning in maize. G3 Genes|Genomes|Genetics 2018;8(11):3583-3592. https://doi.org/10.1534/g3.118.200499 PMid: 30194092.

Shen S, Xu S, Wang M, et al. BSA-seq for the identification of major genes for EPN in rice. Int J Mol Sci 2023;24(19):14838. https://doi.org/10.3390/ijms241914838 PMid: 37834285.

Wang J, Feng H, Jia X, et al. Identifications of QTLs and candidate genes associated with Pseudomonas syringae responses in cultivated soybean (Glycine max) and wild soybean (Glycine soja). Int J Mol Sci 2023;24(5):4618. https://doi.org/10.3390/ijms24054618 PMid: 36902050.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Electronic Journal of Biotechnology