Abstract
Background: Cancer continues to be one of the greatest challenges in modern medicine and is second only to cardiovascular disease as the main cause of death. Breast cancer in particular is responsible for 15% of deaths in women. In this study, Lactobacillus bulgaricus was microencapsulated using a chitosan/alginate mixture. Parameters such as chitosan, alginate, and L. bulgaricus populations were optimized using Design Expert software. The responses were loading efficiency, particle size, release, and ζ-potential. Subsequently, the cytotoxicity of the optimized ratio of chitosan/alginate nanoparticles was investigated on MCF-7 cancer cells.
Results: The research revealed that optimal conditions for the mentioned variables were a chitosan concentration of 1% w/w, an alginate concentration of 1% w/w, and a L. bulgaricus count of 8.15 CFU/ml. Following numerical optimization, the loading efficacy = 91.15%, the release = 71.55%, the polydispersity index = 0.11, and the ζ-potential = 61.94 based on numerical optimization. Findings revealed that miracle drinks with L. bulgaricus-loaded chitosan/alginate microcapsule ratios exhibited toxic and potential apoptotic effects on MCF-7 cancer cells. This study showed that a miracle drink prepared with the optimal ratio of probiotic nanoparticles stops cells in the S and G2/M phases.
Conclusions: The results show that Miracle drink supplemented with L. bulgaricus loaded-chitosan/alginate nanoparticles has a toxic and lethal effect on MCF-7 cancer cells. This compound can be suggested and used as an alternative candidate or complementary cancer therapy.
References
McDonald ES, Clark AS, Tchou J, et al. Clinical diagnosis and management of breast cancer. J Nucl Med 2016;57(Suppl 1):9S-16S. https://doi.org/10.2967/jnumed.115.157834 PMid: 26834110
Steadman L, Rutter DR. Belief importance and the theory of planned behavior: comparing modal and ranked modal beliefs in predicting attendance at breast screening. Br J Health Psychol 2004;9(4):447-463. https://doi.org/10.1348/1359107042304579 PMid: 15509354
Chen H, Shao F, Zhang F, et al. Association between dietary carrot intake and breast cancer. Medicine 2018;97(37):e12164. https://doi.org/10.1097/MD.0000000000012164 PMid: 30212943
Lamyian M, Hydarnia A, Ahmadi F, et al. Barriers to and factors facilitating breast cancer screening among Iranian women: a qualitative study. East. Medit. Health J 2007;13(5):1160-1169. https://doi.org/10.26719/2007.13.5.1160 PMid: 18290410
Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol 2019;7(1):3-23. https://doi.org/10.2174/2211738507666190122111224 PMid: 30666921
Pondé N, Aftimos P, Piccart M. Antibody-drug conjugates in breast cancer: a comprehensive review. Curr. Treat. Options in Oncol 2019;20:37. https://doi.org/10.1007/s11864-019-0633-6 PMid: 30931493
Gilmour F, Williams A. Support with nutrition for women receiving chemotherapy for breast cancer. Br J Nurs 2018;27(4):S4-S9. https://doi.org/10.12968/bjon.2018.27.4.S4 PMid: 29457937
Mishra A, Srivastava A, Pateriya A, et al. Metabolic reprogramming confers tamoxifen resistance in breast cancer. Chem Biol Interact 2021;347:109602. https://doi.org/10.1016/j.cbi.2021.109602 PMid: 34331906
Sachdev S, Carroll P, Sandler H, et al. Assessment of postprostatectomy radiotherapy as adjuvant or salvage therapy in patients with prostate cancer: a systematic review. JAMA Oncol 2020;6(11):1793-1800. https://doi.org/10.1001/jamaoncol.2020.2832 PMid: 32852528
Jaganathan SK, Vellayappan MV, Narasimhan G, et al. Chemopreventive effect of apple and berry fruits against colon cancer. World J Gastroenterol 2014;20(45):17029-17036. https://doi.org/10.3748/wjg.v20.i45.17029 PMid: 25493015
Przybylska K, Bennett RN, Kromer K, et al. Assessment of the antiproliferative activity of carrot and apple extract. Pol. J. Food Nutr. Sci 2007;57(3):307-314.
Mostafa HS, Ali MR, Mohamed RM. Production of a novel probiotic date juice with anti-proliferative activity against Hep-2 cancer cells. Food Sci. Technol 2021;41(Supp 1):105-115. https://doi.org/10.1590/fst.09920
Le Leu RK, Hu Y, Brown IL, et al. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis 2009;31(2):246-251. https://doi.org/10.1093/carcin/bgp197 PMid: 19696163
Ohigashi S, Hoshino Y, Ohde S, Onodera H. Functional outcome, quality of life, and efficacy of probiotics in postoperative patients with colorectal cancer. Surg Today 2011;41(9):1200-07. doi:10.1007/s00595-010-4450-6
Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 2011;6(3):261-269. doi:10.1007/s12263-011-0218-x
Gandomi H, Abbaszadeh S, Misaghi A, et al. Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT Food Sci. Technol 2016;69(11):365-371. https://doi.org/10.1016/j.lwt.2016.01.064
Hansen LT, Allan-Wojtas P, Jin YL, et al. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol 2002;19(1):3-45. https://doi.org/10.1006/fmic.2001.0452
Petkova D, Mihaylova D, Desseva I. Microencapsulation in food industry – an overview BIO Web of Conferences 2022;45:02005. https://doi.org/10.1051/bioconf/20224502005
Abd El-Hack ME, El-Saadony MT, Shafi ME, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol 2020;164:2726-2744. https://doi.org/10.1016/j.ijbiomac.2020.08.153 PMid: 32841671
Yeung TW, Üçok EF, Tiani KA, et al. Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Front. Microbiol 2016;7:494. https://doi.org/10.3389/fmicb.2016.00494 PMid: 27148184
Mokriani S, Tukmechi A, Harzandi N, et al. In vivo murine breast cancer targeting by magnetic iron nanoparticles involving L. GG cytoplasmic fraction. Iranian Journal of Basic Medical Sciences 2021;24(5):682-689. https://doi.org/10.22038/ijbms.2021.54961.12322 PMid: 34249271
Zhang B, Guowei S, Bao C. Optimization of culture medium for Lactobacillus bulgaricus using Box-Behnken design. Acta Universitatis Cibiniensis Series E: Food Technol 2017;21(1):3-10. https://doi.org/10.1515/aucft-2017-0001
Deding U, Baatrup G, Kaalby L, et al. Carrot intake and risk of developing cancer: a prospective cohort study. Nutrients 2023;15(3):678. https://doi.org/10.3390/nu15030678 PMid: 36771385
Lechner JF, Stoner GD. Red beetroot and betalains as cancer chemopreventative agents. Molecules. 2019;24(8):1602. https://doi.org/10.3390/molecules24081602 PMid: 31018549
Zohri M, Arefian E, Javar HA, et al. Potential of chitosan/alginate nanoparticles as a non-viral vector for gene delivery: Formulation and optimization using D-optimal design. Materials Science and Engineering: C 2021;128:112262. https://doi.org/10.1016/j.msec.2021.112262 PMid: 34474821
Karimi Zindashti G, Khaleghi S, Nemati Mansur F, et al. The design and preparation of fluorescent labeled chitosan nanoparticles for intestinal delivery. Med Sci J of Islamic Azad University 2020;30(4):352-362. https://doi.org/10.29252/iau.30.4.352
Riaz Rajoka MS, Zhao H, Lu Y, et al. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct 2018;9(5):2705-2715. https://doi.org/10.1039/C8FO00547H PMid: 29762617
Budi S, Suliasih BA, Erdawati IR, Size-controlled chitosan nanoparticles prepared using ionotropic gelation Setia. ScienceAsia 2020;46:457-461. https://doi.org/10.2306/scienceasia1513-1874.2020.059
Sarei F, Mohammadpour Dounighi N, Zolfagharian H, et al. Design and evaluate alginate nanoparticles as a protein delivery system. Arch. Razi Inst. 2013;68(2):139-146.
Oberoi K, Tolun A, Altintas Z, et al. Effect of alginate-microencapsulated hydrogels on the survival of Lactobacillus rhamnosus under simulated gastrointestinal conditions. Foods 2021 26;10(9):1999. https://doi.org/10.3390/foods10091999 PMid: 34574109
Lee KY, Heo TR. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ. Microbiol. 2000;66(2):869-873. https://doi.org/10.1128/AEM.66.2.869-873.2000 PMid: 10653768
Zohri M, Akbari Javar H, Gazori T, et al. Response Surface Methodology for statistical optimization of chitosan/alginate nanoparticles as a vehicle for recombinant human bone morphogenetic protein-2 delivery. International Journal of Nanomedicine 2020;15:8345-8356. https://doi.org/10.2147/IJN.S250630 PMid: 33154637
Nematollahi A, Sohrabvandi S, Mortazavian AM, et al. Viability of probiotic bacteria and some chemical and sensory characteristics in cornelian cherry juice during cold storage. Electronic Journal of Biotechnology 2016;21:49-53. https://doi.org/10.1016/j.ejbt.2016.03.001
Zohri M, Nomani AR, Gazori T, et al. Characterization of chitosan/alginate self assembled nanoparticles as a protein carrier. J. Dispers. Sci. Technol 2011;32(4):576-582. https://doi.org/10.1080/01932691003757314
Alkushi AG, Abdelfattah-Hassan A, Eldoumani H. et al. Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis. Sci Rep 2022;12:5116. https://doi.org/10.1038/s41598-022-08915-5 PMid: 35332200
Shanmugam R, Munusamy T, Jayakodi S, et al. Probiotic-bacteria (Lactobacillus fermentum)-wrapped zinc oxide nanoparticles: biosynthesis, characterization, and antibacterial activity. Fermentation 2023;9(5):413. https://doi.org/10.3390/fermentation9050413
Dimitrellou D, Kandylis P, Levi? S, et al. Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. LWT 2023;116:108501. https://doi.org/10.1016/j.lwt.2019.108501
Shah A, Lutfullah G, Ahmad K, et al. Daphne mucronata-mediated phytosynthesis of silver nanoparticles and their novel biological applications, compatibility and toxicity studies. Green Chem Lett Rev 2018;11(3):318-333. https://doi.org/10.1080/17518253.2018.1502365
Koo SM, Cho YH, Huh CS, et al. Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J. Microbiol. Biotechnol 2001;11(3):376-383.
Tantra R, Schulze Ph, Quincey P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 2010;8(3):279-285. https://doi.org/10.1016/j.partic.2010.01.003
Azuma K, Osaki T, Minami S, et al. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater 2019;6(1):33-49. https://doi.org/10.3390/jfb6010033 PMid: 25594943
Chen ZY, Hsieh YM, Huang CC, et al. Inhibitory effects of probiotic Lactobacillus on the growth of human colonic carcinoma cell line HT-29. Molecules 2017;22(1):107. https://doi.org/10.3390/molecules22010107 PMid: 28075415
Shakil MS, Mahmud KM, Sayem M, et al. Using chitosan or chitosan derivatives in cancer therapy. Polysaccharides 2021;2(4):795-816. https://doi.org/10.3390/polysaccharides2040048
Er S, Koparal AT, Kivanç M. Cytotoxic effects of various lactic acid bacteria on Caco-2 cells. Turk. J. Bio 2015;39(1):4. doi:10.3906/biy-1402-62. https://doi.org/10.3906/biy-1402-62
Niu T, Zhang W, Xiao W. MicroRNA regulation of cancer stem cells in the pathogenesis of breast cancer. Cancer Cell Int. 2021;21(1):31. https://doi.org/10.1186/s12935-020-01716-8 PMid: 33413418
Päth G, Bornstein SR, Gurniak M, et al. Human breast adipocytes express interleukin-6 (IL-6) and its receptor system: increased IL-6 production by ?-adrenergic activation and effects of IL-6 on adipocyte function. J. Clin. Endocrinol. Metab. 2001;86(5):2281-2288. https://doi.org/10.1210/jcem.86.5.7494 PMid: 11344240
Wang L, Jin Z, Master RP, et al. Breast cancer stem cells: Signaling pathways, cellular interactions, and therapeutic implications. Cancers 2022;14(13):3287. https://doi.org/10.3390/cancers14133287 PMid: 35805056
Yousefnia S, Seyed Forootan F, Seyed Forootan S, et al. Mechanistic pathways of malignancy in breast cancer stem cells. Front Oncol. 2020;10:452. https://doi.org/10.3389/fonc.2020.00452 PMid: 32426267
Gupta M, Walters BA, Katsara O, et al. eIF2B? blocks the integrated stress response and maintains eIF2B activity and cancer metastasis by overexpression in breast cancer stem cells. Proc Natl Acad Sci USA. 2023;120(15):e2207898120. https://doi.org/10.1073/pnas.2207898120 PMid: 37014850
Fan B, Shi S, Shen X, et al. Effect of HMGN2 on proliferation and apoptosis of MCF-7 breast cancer cells. Oncol Lett. 2019;17(1):1160-1166. https://doi.org/10.3892/ol.2018.9668

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Electronic Journal of Biotechnology
