Abstract
Background: Ferredoxin 1 (Fd1) is the main electron donor to hydrogenase (HydA) for generating molecular hydrogen (H2) in green microalgae. In order to obtain an increased H2 production, the Fd1 of Chlamydomonas reinhardtii (CrFd1, encoded by crfd1) was therefore overexpressed in Chlorella sp. DT (DT) in this study.
Results: The coding region of crfd1 was constructed into the p121-crfd1 plasmid, which was also constructed with a resistance gene to the antibiotic geneticin (G418) as a selection marker. The p121-crfd1 plasmid was transformed into DT cells by electroporation. Observation of the crfd1 gene fragment in the genomic DNA of DT-crfd1 mutants by PCR indicated that the transgene was successfully transformed. Using western blotting, the overexpressed CrFd1 protein, with a molecular weight of about 14 kDa, was found in DT-crfd1 mutants of DT-crfd1-4, DT-crfd1-22, and DT-crfd1-23. Using an in vitro assay, the H2 production of DT-crfd1-4, DT-crfd1-22, and DT-crfd1-23 mutants was about 4.4-, 5.0-, and 3.8-fold higher, respectively, than the DT wild type (DT-WT). Using an in vivo assay, the H2 production of DT-crfd1-4, DT-crfd1-22, and DT-crfd1-23 mutants was about 1.3-, 1.4-, and 1.2-fold higher, respectively, than the DT-WT.
Conclusions: The results suggested that heterologous overexpression of CrFd1 could enhance H2 production in DT-crfd1 mutants even though in vitro H2 production of DT-crfd1-22 mutant was up to 5-fold higher than the DT-WT.
References
Gaffron H, Rubin J. Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 1942;26(2):219-240. https://doi.org/10.1085/jgp.26.2.219 PMid: 19873339
Rathore D, Singh A, Dahiya D, et al. Sustainability of biohydrogen as fuel: Present scenario and future perspective. AIMS Energy 2019;7:1-19. https://doi.org/10.3934/energy.2019.1.1
Khan S, Fu P. Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr Opin Biotechnol 2020;62:146-152. https://doi.org/10.1016/j.copbio.2019.09.020 PMid: 31683048
Srivastava RK, Shetti NP, Reddy KR, et al. Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett 2020;18:1049-1072. https://doi.org/10.1007/s10311-020-00999-7
Chen QY. Global potential of algae-based photobiological hydrogen production. Energy Environ Sci 2022;15(7):2843-2857. https://doi.org/10.1039/D2EE00342B
Pathy A, Nageshwari K, Ramaraj R, et al. Biohydrogen production using algae: Potentiality, economics and challenges. Bioresour Technol 2022;360:127514. https://doi.org/10.1016/j.biortech.2022.127514 PMid: 35760248
Redding KE, Appel J, Boehm M, et al. Advances and challenges in photosynthetic hydrogen production. Trends Biotechnol 2022;40(11):1313-1325. https://doi.org/10.1016/j.tibtech.2022.04.007 PMid: 35581021
Arimbrathodi SP, Javed MA, Hamouda MA, et al. BioH2 production using microalgae: Highlights on recent advancements from a bibliometric analysis. Water 2023;15(1):185. https://doi.org/10.3390/w15010185
Suresh G, Kumari P, Mohan SV. Light-dependent biohydrogen production: Progress and perspectives. Bioresour Technol 2023;380:129007. https://doi.org/10.1016/j.biortech.2023.129007 PMid: 37061171
Zhang GD, Liu J, Pan XT, et al. Latest avenues and approaches for biohydrogen generation from algal towards sustainable energy optimization: Recent innovations, artificial intelligence, challenges, and future perspectives. Int J Hydrogen Energy 2023;48(55):20988-21003. https://doi.org/10.1016/j.ijhydene.2022.10.224
Rathi BS, Kumar PS, Rangasamy G. A short review on current status and obstacles in the sustainable production of biohydrogen from microalgal species. Mol Biotechnol 2023 (early access). https://doi.org/10.1007/s12033-023-00840-w PMid: 37566189
Khedr N, Elsayed KNM, Ibraheem IBM, et al. New insights into enhancement of bio-hydrogen production through encapsulated microalgae with alginate under visible light irradiation. Int J Biol Macromol 2023;253(part 7):127270. https://doi.org/10.1016/j.ijbiomac.2023.127270 PMid: 37804894
Melis A, Happe T. Hydrogen production. Green algae as a source of energy. Plant Physiol 2001;127(3):740-748. https://doi.org/10.1104/pp.010498 PMid: 11706159
Petrova EV, Kukarskikh GP, Krendeleva TE, et al. The Mechanisms and role of photosynthetic hydrogen production by green microalgae. Microbiology 2020;89(3):251-265. https://doi.org/10.1134/S0026261720030169
Stripp ST, Happe T. How algae produce hydrogen?news from the photosynthetic hydrogenase. Dalton Trans 2009;45:9960-9969. https://doi.org/10.1039/b916246a PMid: 19904421
Ji HS, Wan L, Gao YX, et al. Hydrogenase as the basis for green hydrogen production and utilization. J Energy Chem 2023;85:348-362. https://doi.org/10.1016/j.jechem.2023.06.018
Kubas A, Orain C, De Sancho D, et al. Mechanism of O2 diffusion and reduction in FeFe hydrogenases. Nature Chem 2017;9:88-95. https://doi.org/10.1038/nchem.2592 PMid: 27995927
Ghirardi ML. Implementation of photobiological H2 production: the O2 sensitivity of hydrogenases. Photosynth Res 2015;125:383-393. https://doi.org/10.1007/s11120-015-0158-1 PMid: 26022106
Lu Y, Koo JM. O2 sensitivity and H2 production activity of hydrogenases—A review. Biotechnol Bioeng 2019;116(11):3124–3135. https://doi.org/10.1002/bit.27136 PMid: 31403182
Bes MT, Parisini E, Inda LA, et al. Crystal structure determination at 1.4 Å resolution of ferredoxin from the green alga Chlorella fusca. Structure 1999;7(10):1201-1210. https://doi.org/10.1016/S0969-2126(00)80054-4 PMid: 10545324
Sawyer A, Winkler M. Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases. Photosynth Res 2017;134:307-316. https://doi.org/10.1007/s11120-017-0409-4 PMid: 28620699
Tamayo-Ordoñez YD, Ayil-Gutierrez BA, Moreno-Davila IMM, et al. Bioinformatic analysis and relative expression of hyd and fdx during H2 production in microalgae. Phycol Res 2023;71(1):37-55. https://doi.org/10.1111/pre.12500
Dubini A, Ghirardi ML. Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res 2015;123:241-253. https://doi.org/10.1007/s11120-014-9991-x PMid: 24671643
Vinayak V, Sirotiya V, Khandelwal P, et al. Recent trends in engineering algae for biohydrogen production: State of art strategies. Fuel 2023;348:128636. https://doi.org/10.1016/j.fuel.2023.128636
Nageshwari K, Pathy A, Pugazhendhi A, et al. Bioprocess strategies to augment biohydrogen production from algae. Fuel 2023;351:128922. https://doi.org/10.1016/j.fuel.2023.128922
Woon JM, Khoo KS, Akermi M, et al. Reviewing biohydrogen production from microalgal cells through fundamental mechanisms, enzymes and factors that engendering new challenges and prospects. Fuel 2023;346:128312. https://doi.org/10.1016/j.fuel.2023.128312
Siitonen V, Probst A, Tóth G, et al. Engineered green alga Chlamydomonas reinhardtii as a whole-cell photosynthetic biocatalyst for stepwise photoproduction of H2 and ?-caprolactone. Green Chem 2023;25:5945-5955. https://doi.org/10.1039/D3GC01400B
Zhang JQ, Xue DS, Wang CJ, et al. Genetic engineering for biohydrogen production from microalgae. iScience 2023;26(8):107255. https://doi.org/10.1016/j.isci.2023.107255 PMid: 37520694
Wu S, Huang R, Xu L, et al. Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. J Biotechnol 2010;146(3):120-125. https://doi.org/10.1016/j.jbiotec.2010.01.023 PMid: 20138927
Li H, Liu Y, Wang Y, et al. Improved photobio?H2 production regulated by artificial miRNA targeting psbA in green microalga Chlamydomonas reinhardtii. Biotechnol Biofuels 2018;11:36. https://doi.org/10.1186/s13068-018-1030-2 PMid: 29449884
Vajravel S, Allahverdiyeva Y, Kosourov S. 2023. Balancing photosynthesis, O2 consumption, and H2 recycling for sustained H2 photoproduction in pulse-illuminated algal cultures. Sustain Energy Fuels 2023;7(8):1818-1828. https://doi.org/10.1039/D2SE01545E
Agapakis CM, Ducat DC, Boyle PM, et al. Insulation of a synthetic hydrogen metabolism circuit in bacteria. J Biol Eng 2010;4:3. https://doi.org/10.1186/1754-1611-4-3 PMid: 20184755
Eilenberg H, Weiner I, Ben-Zvi O, et al. The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance. Biotechnol Biofuels 2016;9:182. https://doi.org/10.1186/s13068-016-0601-3 PMid: 27582874
Weiner I, Shahar N, Feldman Y, et al. Overcoming the expression barrier of the ferredoxin-hydrogenase chimera in Chlamydomonas reinhardtii supports a linear increment in photosynthetic hydrogen output. Algal Res-Biomass Biofuel and Bioproducts 2018;33:310-315. https://doi.org/10.1016/j.algal.2018.06.011
Xiong D, Happe T, Hankamer B, et al. Inducible high level expression of a variant ?D19A,D58A-ferredoxin-hydrogenase fusion increases photohydrogen production efficiency in the green alga Chlamydomonas reinhardtii. Algal Res 2021;55:102275. https://doi.org/10.1016/j.algal.2021.102275
Engelbrecht V, Rodríguez-Maciá P, Esselborn J, et al. The structurally unique photosynthetic Chlorella variabilis NC64A hydrogenase does not interact with plant-type ferredoxins. Biochim Biophys Acta Bioenerg 2017;1858(9):771-778. https://doi.org/10.1016/j.bbabio.2017.06.004 PMid: 28647463
Hwang JH, Kim HC, Choi JA, et al. Photoautotrophichydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 2014;5:3234. https://doi.org/10.1038/ncomms4234 PMid: 24492668
Touloupakis E, Faraloni C, Silva Benavides AM, et al. Sustained photobiological hydrogen production by Chlorella vulgaris G-120 without nutrient starvation. Int J Hydrogen Energy. 2021;46(5):3684-3694. https://doi.org/10.1016/j.ijhydene.2020.10.257
Sirawattanamongkol T, Maswanna T, Maneeruttanarungroj C. A newly isolated green alga Chlorella sp. KLSc59: potential for biohydrogen production. J Appl Phycol 2020;32:2927-2936. https://doi.org/10.1007/s10811-020-02140-1
Yang DW, Syn JW, Hsieh CH, et al. Genetically engineered hydrogenases promote biophotocatalysis-mediated H2 production in the green alga Chlorella sp. DT. Int J Hydrogen Energy 2019;44(5):2533-2545. https://doi.org/10.1016/j.ijhydene.2018.11.088
Chen PC, Lai CL. Physiological adaptation during cell dehydration and rewetting of a newly-isolated Chlorella species. Plant Physiol 1996;96(3):453-457. https://doi.org/10.1111/j.1399-3054.1996.tb00458.x
Hsu SJ, Hsu BD. Flow cytometry of Chlorella after dehydration stress. Plant Sci 1998;134(2):163-169. https://doi.org/10.1016/S0168-9452(98)00055-7
Sambrook J, Russell DJ. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
Tsai HC, Hsieh CH, Hsu CW, et al. Cloning and organelle expression of bamboo mitochondrial complex I subunits Nad1, Nad2, Nad4, and Nad5 in the yeast Saccharomyces cerevisiae. Int J Mol Sci 2022;23(7):4054. https://doi.org/10.3390/ijms23074054 PMid: 35409414
Hawkins RL, Nakamura M. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 1999;38:335-341. https://doi.org/10.1007/PL00006813 PMid: 10341074
Boehm M, Alahuhta M, Mulder DW, et al. Crystal structure and biochemical characterization of Chlamydomonas FDX2 reveal two residues that, when mutated, partially confer FDX2 the redox potential and catalytic properties of FDX1. Photosynth Res 2016;128:45-57. https://doi.org/10.1007/s11120-015-0198-6 PMid: 26526668
Ma H, Zheng X, Yang H. Enhancement on hydrogen production performance of Rhodobacter sphaeroides HY01 by overexpressing fdxN. Int J Hydrogen Energy 2018;43(36):17082-17090. https://doi.org/10.1016/j.ijhydene.2018.07.101
Yacoby I, Pochekailov S, Toporik H, et al. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci USA 2011;108(23):9396-9401. https://doi.org/10.1073/pnas.1103659108 PMid: 21606330
Rumpel S, Siebel JF, Farès C, et al. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci 2014;7(10):3296-3301. https://doi.org/10.1039/C4EE01444H
Günzel A, Engelbrecht V, Happe T. Changing the tracks: screening for electron transfer proteins to support hydrogen production. J Biol Inorg Chem 2022;27(7):631-640. https://doi.org/10.1007/s00775-022-01956-1 PMid: 36038787
Weigand K, Winkler M, Rumpel S, et al. Rational redesign of the ferredoxin-NADP+-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H2-production. BBA-Bioenergetics 2018;1859(4):253-262. https://doi.org/10.1016/j.bbabio.2018.01.006 PMid: 29378161
Sahrin NT, Khoo KS, Lim JW, et al. Current perspectives, future challenges and key technologies of biohydrogen production for building a carbon-neutral future: A review. Bioresour Technol 2022;364:128088. https://doi.org/10.1016/j.biortech.2022.128088 PMid: 36216282

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2024 Electronic Journal of Biotechnology