circUBAP2 ameliorates hypoxia-induced acute myocardial injury by competing with miR-148b-3p and mediating CDKN1B expression

Graphical abstract

circUBAP2 ameliorates hypoxia-induced acute myocardial injury by competing with miR-148b-3p and mediating CDKN1B expression
PDF
HTML

Keywords

Acute myocardial infarction
CCK-8 assay
CDKN1B
circUBAP2
Flow cytometry
High-throughput sequencing
Inflammation
LDH release
Luciferase activity
miR-148b-3p
RIP assay

Categories

How to Cite

1.
Li F, Xu L, Ou J, Yang Z, Dai Y, Qiu M, Hou X, Zhu D. circUBAP2 ameliorates hypoxia-induced acute myocardial injury by competing with miR-148b-3p and mediating CDKN1B expression. Electron. J. Biotechnol. [Internet]. 2024 Mar. 15 [cited 2024 Oct. 13];68:1-10. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2352

Abstract

Background: A recent high-throughput sequencing study revealed an anomalous underexpression of circular RNA UBAP2 (circUBAP2) in acute myocardial infarction (AMI), yet its biological function within this context remains elusive. This study aims to unravel whether circUBAP2 is instrumental in modulating the pathogenesis of AMI and to illuminate the underlying molecular mechanisms at play.

Results: circUBAP2 was abnormally low expressed in AMI. Inducing circUBAP2 ameliorated hypoxia-induced myocardial cell injury by enhancing cellular viability, and decreasing lactate dehydrogenase release, apoptosis, inflammation, and oxidative damage. circUBAP2 targeted miR-148b-3p, miR-148b-3p overexpression offset circUBAP2-induced cardioprotection. Cyclin-dependent kinase inhibitor 1B (CDKN1B) was mediated by miR-148b-3p, and CDKN1B upregulation suppressed the deleterious effect of circUBAP2 silencing on hypoxic AC16 cells. In addition, overexpression of circUBAP2 improved myocardial injury, decreased myocardial cell apoptosis, and alleviated inflammation and oxidative stress in AMI mice.

Conclusions: circUBAP2 ameliorates AMI by competitively binding to miR-148b-3p and mediating CDKN1B expression.

https://doi.org/10.1016/j.ejbt.2023.11.003
PDF
HTML

References

Colombo A, Proietti R, ?uli? V, et al. Triggers of acute myocardial infarction: A neglected piece of the puzzle. J Cardiovasc Med 2014;15(1):1-7. https://doi.org/10.2459/JCM.0b013e3283641351 PMid: 24500234

Bajaj A, Sethi A, Rathor P, et al. Acute complications of myocardial infarction in the current era: Diagnosis and management. J Investig Med. 2015;63(7):844-55. https://doi.org/10.1097/JIM.0000000000000232 PMid: 26295381

Damluji AA, van Diepen S, Katz JN, et al. Mechanical complications of acute myocardial infarction: A scientific statement from the American Heart Association. Circulation. 2021;144(2):e16-e35. https://doi.org/10.1161/CIR.0000000000000985

Saito Y, Oyama K, Tsujita K, et al. Treatment strategies of acute myocardial infarction: Updates on revascularization, pharmacological therapy, and beyond. J Cardiol. 2023;81(2):168-78. https://doi.org/10.1016/j.jjcc.2022.07.003 PMid: 35882613

Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10(8):3503-17. https://doi.org/10.7150/thno.42174 PMid: 32206104

Zhang S, Wang W, Wu X, et al. Regulatory roles of circular RNAs in coronary artery disease. Mol Ther Nucleic Acids. 2020;21:172-9. https://doi.org/10.1016/j.omtn.2020.05.024 PMid: 32585625

Altesha MA, Ni T, Khan A, et al. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234(5):5588-600. https://doi.org/10.1002/jcp.27384 PMid: 30341894

Sun J, Yin A, Zhang W, et al. CircUBAP2 inhibits proliferation and metastasis of clear cell renal cell carcinoma via targeting miR-148a-3p/FOXK2 pathway. Cell Transplant. 2020;29:963689720925751. https://doi.org/10.1177/0963689720925751 PMid: 32425115

Li J, Yu Z, Zeng J, et al. Circular RNA UBAP2 (hsa_circ_0007367) correlates with microcirculatory perfusion and predicts outcomes of cardiogenic shock patients undergoing extracorporeal membrane oxygenation support. Shock. 2022;57(6):200-10. https://doi.org/10.1097/SHK.0000000000001937 PMid: 35759302

Wu J, Li C, Lei Z, et al. Comprehensive analysis of circRNA-miRNA-mRNA regulatory network and novel potential biomarkers in acute myocardial infarction. Front Cardiovasc Med. 2022;9:850991. https://doi.org/10.3389/fcvm.2022.850991 PMid: 35872921

Zhou J, He S, Wang B, et al. Construction and bioinformatics analysis of circRNA-miRNA-mRNA network in acute myocardial infarction. Front Genet. 2022;13:854993. https://doi.org/10.3389/fgene.2022.854993 PMid: 35422846

Wang S, Cheng Z, Chen X, et al. Long noncoding RNA SNHG4 attenuates the injury of myocardial infarction via regulating miR-148b-3p/DUSP1 axis. Cardiovasc Ther. 2022;2022:1652315. https://doi.org/10.1155/2022/1652315 PMid: 36545243

Sun M, Zhai M, Zhang N, et al. MicroRNA-148b-3p is involved in regulating hypoxia/reoxygenation-induced injury of cardiomyocytes in vitro through modulating SIRT7/p53 signaling. Chem Biol Interact. 2018;296:211-9. https://doi.org/10.1016/j.cbi.2018.10.003 PMid: 30308185

Rodríguez I, Coto E, Reguero JR, et al. Role of the CDKN1A/p21, CDKN1C/p57, and CDKN2A/p16 genes in the risk of atherosclerosis and myocardial infarction. Cell Cycle. 2007;6(5):620-5. https://doi.org/10.4161/cc.6.5.3927 PMid: 17351341

Zhou N, Huang Q, Cheng W, et al. p27kip1 haploinsufficiency preserves myocardial function in the early stages of myocardial infarction via Atg5?mediated autophagy flux restoration. Mol Med Rep. 2019;20(4):3840-8. https://doi.org/10.3892/mmr.2019.10632

Zhang M, Wang Z, Cheng Q, et al. Circular RNA (circRNA) CDYL induces myocardial regeneration by ceRNA after myocardial infarction. Med Sci Monit. 2020;26:e923188. https://doi.org/10.12659/MSM.923188

Zhu Y, Zhao P, Sun L, et al. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3?/?-catenin pathway in rats with myocardial infarction. Cell Death Discov. 2021;7(1):84. https://doi.org/10.1038/s41420-021-00467-3 PMid: 33875647

Zheng G, Huang J, Chen W, et al. circUBAP2 exacerbates malignant capabilities of NSCLC by targeting KLF4 through miR-3182 modulation. Aging 2021;13(8):11083-95. https://doi.org/10.18632/aging.202745 PMid: 33882454

Liu B, Tian Y, Chen M, et al. CircUBAP2 promotes MMP9-mediated oncogenic effect via sponging miR-194-3p in hepatocellular carcinoma. Front Cell Dev Biol. 2021;9:675043. https://doi.org/10.3389/fcell.2021.675043 PMid: 34239873

Yang W, Sun L, Cao X, et al. Detection of circRNA biomarker for acute myocardial infarction based on system biological analysis of RNA expression. Front Genet. 2021;12:686116. https://doi.org/10.3389/fgene.2021.686116 PMid: 33995502

Yang M, Kong DY, Chen JC. Inhibition of miR-148b ameliorates myocardial ischemia/reperfusion injury via regulation of Wnt/?-catenin signaling pathway. J Cell Physiol. 2019;234(10):17757-66. https://doi.org/10.1002/jcp.28401 PMid: 30820984

Chen D, Zhang M. GAS5 regulates diabetic cardiomyopathy via miR-221-3p/p27 axis?associated autophagy. Mol Med Rep. 2021;23(2):135. https://doi.org/10.3892/mmr.2020.11774 PMid: 33313941

Zhang Q, Li D, Zhao H, et al. Decitabine attenuates ischemic stroke by reducing astrocytes proliferation in rats. PLoS One. 2022;17(8):e0272482. https://doi.org/10.1371/journal.pone.0272482 PMid: 35917376

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Electronic Journal of Biotechnology