Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase
PDF

Keywords

Conformational structure
Cytochrome
High-performance size exclusion chromatography
Isothermal titration calorimetry
Laccase
Laser particle size analysis
pH value
Protein cross-linking
Substrate requirement

How to Cite

1.
Li D-X, Qi Z-Y, Liu J-Y, Zhou J-Q. Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase. Electron. J. Biotechnol. [Internet]. 2022 Nov. 15 [cited 2024 Dec. 3];60. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2022.07.002

Abstract

Background: The aim of the present study was to investigate the effect of substrate conformational structure changes on the laccase-induced protein cross-linking. The effects of laccase amount, pH, and ferulic acid (FA) on the enzymatic cross-linking of substrate, Cyt C, were determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. High-performance size exclusion chromatography, laser particle size analysis and isothermal titration calorimetry (ITC) were also applied to investigate the cross-linking product and enthalpy changes. Structural changes of Cyt C at different pH values were analyzed by ultraviolet–visible (UV–vis), fluorescence, and circular dichroism (CD) measurements.

Results: Complete cross-linking, partial cross-linking, minute cross-linking, and no cross-linking occurred at pH 2.0, 4.0, 6.0, and 8.0, respectively. ITC analysis demonstrated that the enzymatic cross-linking of Cyt C was an endothermic process. The UV–vis, fluorescence, and CD measurements exhibited that the tertiary structure of Cyt C was disrupted, and part of the α-helical polypeptide region unfolded at pH 2.0. The structural flexibilities decreased, and the tertiary structure of Cyt C became increasingly compact with the increase in pH values from 4.0 to 8.0. The gradual changes in the structure of Cyt C at different pH values were in accordance with the cross-linking results of Cyt C catalyzed by laccase.

Conclusions: The results demonstrated that minute structure changes of substrate had a remarkable effect on the laccase-induced cross-linking. The findings promote the understanding of the substrate requirement of laccase in protein cross-linking and are instructive for the modulation of laccase-induced protein cross-linking.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.