Antimicrobial characterization of a titanium coating derived from mussel-glue and Bothrops asper snake venom for the prevention of implant-associated infections caused by Staphylococcus
PDF

Keywords

Antifouling coating
Antimicrobial peptides
Bothrops asper snake venom
Implant-associated infection
Mussel coating
Mussel-glue
Orthopedic implants
Staphylococcus aureus
Staphylococcus epidermidis
Staphylococcus infection
Titanium coating

How to Cite

1.
Gauna A, Mercado L, Guzmán F. Antimicrobial characterization of a titanium coating derived from mussel-glue and Bothrops asper snake venom for the prevention of implant-associated infections caused by Staphylococcus. Electron. J. Biotechnol. [Internet]. 2022 Mar. 22 [cited 2024 Dec. 4];56. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2022.02.001

Abstract

Background: Proliferation of bacteria, such as Staphylococcus aureus and Staphylococcus epidermidis, on orthopedic implants has been a challenge in orthopedic surgery, highlighting the problem of the increasing antibiotic resistance and the necessity to develop new antimicrobial agents. In this sense, antimicrobial peptides are promising candidates, which can be attached to titanium surfaces in order to make them safer. Mytilus mussels are characterized by adhering efficiently to a wide variety of surfaces, especially metallic ones, through adhesive proteins with a high content of dihydroxyphenylalanine, which is a post-translational modification of tyrosine.

Results: This work refers to the synthesis of a coating based on a bifunctional peptide that combines a sequence derived from the mussel foot protein-5 and the antimicrobial peptide pEM-2, derived from Bothrops asper snake venom. The adhesive properties of this bifunctional peptide were evaluated, as well as the adhesive sequence without the pEM-2, using a Quartz Crystal Microbalance. The results showed that the presence of the antimicrobial peptide improved the adhesion; however, a loss of the bactericidal activity was observed. Even so, the adhesive sequence by itself exhibited an important antifouling activity, preventing S. aureus and S. epidermidis adhesion to titanium by 75% and 45%, respectively, although the result against S. epidermidis was not significant.

Conclusions: A 13-residue peptide derived from a natural and biocompatible source, like a Mytilus mussel adhesive protein, could be projected as a protective agent on titanium surfaces against S. aureus and S. epidermidis, being responsible for two thirds of the cases of orthopedic implant infection.

PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.