Abstract
Background: Microbial Fuel Cell (MFC) technology is used in various applications such as wastewater treatment with the production of electrical energy. The objective of this study was to estimate the biodepuration of oils and fats, the elimination of blue dye brl and bioelectro-characterization in MFCs with Chlorella vulgaris and bacterial community.
Results: The operation of MFCs at 32 d showed an increase in bioelectrogenic activity (from 23.17 to 327.67 mW/m2 ) and in the potential (from 200 to 954 mV), with biodepuration of fats and oils (95%) in the microalgal cathode, and a removal of the chemical oxygen demand COD (anode, 71%, cathode, 78.6%) and the blue dye brl (73%) at the anode, here biofilms were formed by the bacterial community consisting of Actinobacteria and Deltaproteobacteria.
Conclusions: These findings suggest that MFCs with C. vulgaris and bacterial community have a simultaneous efficiency in the production of bioelectricity and bioremediation processes, becoming an important source of bioenergy in the future.
Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".
The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.