Abstract
Background: Carboxyl-functionalized magnetic nanoparticles were synthesized via chemical co-precipitation method and modified with oleic acid which was oxidized by potassium permanganate, and κ-carrageenase from Pseudoalteromonas sp. ASY5 was subsequently immobilized onto them. The immobilization conditions were further optimized, and the characterizations of the immobilized κ-carrageenase were investigated.
Results: The κ-carrageenase was immobilized onto magnetic iron oxide nanoparticles, and the bonding was verified by Fourier transform infrared spectroscopy. The optimal conditions for κ-carrageenase immobilization were 2.5% (w/v) glutaraldehyde, 13.9 U κ-carrageenase for 20 mg of magnetic nanoparticles, a 2-h cross-linking time, and a 2-h immobilization time at 25°C. Under these conditions, the activity of the immobilized enzyme and the enzyme recovery rate were 326.0 U · g- 1 carriers and 46.9%, respectively. The properties of the immobilized κ-carrageenase were compared with those of the free enzyme. The optimum temperatures of the free and immobilized κ-carrageenase were 60 and 55°C, respectively, and the optimum pH of κ-carrageenase did not change before and after immobilization (pH 7.5). After immobilization, κ-carrageenase exhibited lower thermal stability and improved pH stability, as well as better storage stability. The immobilized κ-carrageenase maintained 43.5% of the original activity after being used 4 times. The kinetic constant value (Km) of κ-carrageenase indicates that the immobilized enzyme had a lower binding affinity for the substrate.
Conclusions: Under optimal conditions, the activity of the immobilized enzyme and enzyme recovery rate were 326.0 U · g- 1·κ-carrageenase-CMNPs and 46.9%, respectively. The thermal, pH, and storage stabilities of κ-carrageenase-CMNPs were relatively higher than those of free κ-carrageenase.
Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".
The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.