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Background: Sonchus wightianus DC is native to South Asia and has traditionally been known for its wide 
range of applications for the treatment of several human ailments. However, its application for the treat-
ment of neurodegenerative diseases like Alzheimer’s disease (AD) has not been studied yet. In this pre-
sent study, comprehensive metabolite profiling of plant parts and in-vitro cholinesterase inhibitory
potential was examined to see the efficacy of plant extract against AD.
Results: The potent antioxidant activity was demonstrated by the flower extract in both DPPH and ABTS 
assays, with IC50 values of 104.06 ± 2.05 lg/mL and 67.69 ± 1.58 lg/mL, respectively. The crude methanol 
extract of the leaf displayed the highest butyrylcholinesterase (BChE) inhibition potential with IC50 values 
of 281.09 ± 14.64 lg/mL. In contrast, the flower extract exhibited the strongest acetylcholinesterase
(AChE) inhibition with IC50 values of 247.51 ± 11.15 lg/mL. Furthermore, the evaluated plant parts were
a rich source of essential macro and micronutrients. Principal component analysis revealed the major
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contribution of total phenolic content (TPC), and total flavonoid content (TFC) in the plant extracts, which 
might be the prime reason for strong antioxidant and cholinesterase inhibition. Further, the HRMS pro-
filing analysis revealed the presence of Linoleic acid, gingerol, kaempferol, genistein, daidzein, chloro-
genic acid, fisetin and 12-oxo-phytodienoic acid.

How to cite: Subedi A, Pandey BP, Pradhan SP, et al. HRMS-based profiling of metabolites, metal ions 
content and in-vitro cholinesterase inhibitory activities of Sonchus wightianus DC plant parts. Electron
J Biotechnol 2026;79. https://doi.org/10.1016/j.ejbt.2025.100702. 

Conclusions: The findings of this study suggest that Sonchus wightianus DC is a promising source of bioac-
tive compounds and essential micronutrients, with notable potential as an anticholinesterase agent.

© 2025 The Author(s). Published by Elsevier Inc. on behalf of Pontificia Universidad Católica de Val-
paraíso. This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/ 

by-nc-nd/4.0/).
 

1. Introductio n

Medicinal plants and herbs have long been acknowledged for 
their potential health benefits in traditional medicine and remain
a key source of novel therapeutic agents for the treatment of sev-
eral diseases [1]. In many developing nations, plant-based medici-
nes are essential to primary healthcare, often serving as the only
accessible or affordable treatment option for significant portions
of the population [2]. The majority of medicinal plant species 
are rich sources of secondary metabolites and have proven to
be therapeutic agents for the treatment of various human ail-
ments [3]. 

Alzheimer’s disease (AD) is a neurological disorder character-
ized by a gradual loss of memory and cognitive function [4].  It
has been estimated that over 55 million people worldwide suffer
from dementia, with AD accounting for 60–70% of cases [5], and 
the number is projected to increase in the coming years. In Nepal, 
the number of people living with AD has increased significantly
among the elderly population over the past few years [6]. Although 
several therapeutic agents are in use to treat AD, no complete cure
has been achieved to date. 

Among the known hypotheses, the cholinergic hypothesis 
accounts for the gradual loss of neurotransmitter molecules acetyl-
choline (AChI), which is essential for memory and learning. In most 
AD patients, the amount of AChI is significantly less; hence, 
enhancing the pool of AChI would help AD patients improve their 
memory. The AChI acts as a substrate for the enzyme cholinester-
ase; hence, the use of cholinesterase inhibitors is the alternative
strategy to enhance the pool of AChI. Cholinesterase inhibitor drug
molecules work for AD patients by blocking acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE) to improve cholinergic
signaling in the brain [7]. Natural products, including those from 
medicinal plants, have been demonstrated as potential cholinester-
ase inhibitors, offering an alternative to synthetic medications [8]. 
Of the known molecules galantamine, derived from the genus 
Galanthus spp. functions as an acetylcholinesterase inhibitor with
further implications in AD treatment [9]. 

The genus Sonchus, under the Asteraceae family, is well-
regarded in traditional medicine for its anti-inflammatory, diuretic,
and wound-healing benefits [10]. Within this genus, Sonchus, 
which is native to South Asia, has gained scientific attraction for 
its therapeutic potential based on its traditional practices for the
treatment of different diseases [11]. However, its biochemical 
characterization for the efficacy of neurogenerative diseases was 
not well-reported. Despite the immense potential of the Sonchus 
species, very little scientific evidence is available in the literature 
about its chemical composition, metal ions, and biological activi-
ties. In addition to that, the plant itself is a source of secondary
metabolites, and its study is extremely essential for further drug
development [12]. 

In this study, metabolite profiling, metal ions, antioxidant and 
anti-choline sterase properties of the flower, leaf, root, and stem
2

of Sonchus wightianus DC were investigated to examine its applica-
tions for the treatment of AD.
2. Experimental setup

2.1. Chemicals used

Acetylcholinesterase (AChE) (CAS 9000-81-1), Butyryl-
cholinesterase (BChE) (CAS 9001-08-5), Acetylcholine iodide 
(AChI), Butyrylcholine iodide (BChI), 2,2-Diphenyl1-picrylhy-
drazyl (DPPH), and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) 
were acquired from Sigma-Aldrich (USA). Likewise, sodium car-
bonate (Na2CO3), sodium hydroxide (NaOH), dimethyl sulfoxide 
(DMSO), nitric acid (HNO3), perchloric acid (HClO4), sodium bicar-
bonate (Na2CO3), and sulfuric acid (H2SO4) were purchased from
Fisher Scientific (India). All other chemicals were of analytical
grade.

2.2. Collection of plant and extraction

Samples were gathered and collected from Nepal’s Gulmi Dis-
trict (83°19′45.6″ E  28°05′44.9″ N) and labeled based on their parts 
as follows: SWF for flower, SWR for root, SWL for leaf, and SWS for 
stem. The collected plant parts were identified by Dr. Chitra Baha-
dur Baniya, Central Department of Botany, Tribhuvan University. 
The air-dried samples were smushed into powder and dissolved 
in absolute methanol (100%). In brief, 100 mL of methanol was
used to macerate 10 g of powder samples, which were then shaken
at 160 rpm for a whole night at room temperature. The entire mix-
ture was filtered the next day. The crude samples were then evap-
orated using Rota Vapor and a Vacuum Centrifuge Condenser. After
evaporation, the dried samples were stored at 4°C.

2.3. Determination of total phenolics and flavonoids

The total phenolic content (TPC) of various plant extracts was
assessed using the Folin-Ciocalteu UV–VIS assay [13]. Each plant 
extract (10 lL, 1 mg/mL) was combined with 50 lL of 10% FC 
reagent in a 96-well plate and incubated in the dark for 5–6 min 
at room temperature. Afterward, 40 lL  of  7%  Na2CO3 was added, 
and the mixture was incubated in the dark for 1 h. Absorbance 
was measured at 765 nm using a UV–VIS spectrophotometer
(Spectrostar Nano Mars, Germany), with gallic acid (4–10 lg/mL)
as the standard. The total phenolic content was expressed as mg
of gallic acid equivalent per g of dry weight (DW). Furthermore,
total flavonoid content (TFC) was evaluated using the aluminum
chloride (AlCl3) colorimetric test, reported as mg of Quercetin
equivalents per g of DW [14]. Briefly, plant extracts (20 lL) were 
diluted with 40 lL of distilled water, and then, 10 lL of 5% sodium 
nitrate (NaNO2) and 10 lL of 10% AlCl3 were added simultaneously.
After 6 min, 20 lL of 1 M NaOH was introduced to reach a final vol-
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ume of 200 lL with distilled water. Absorbance was measured at 
510 nm using a 96-well plate after vigorous mixing.
 

2.4. Antioxidant assay

specified range. 

The in vitro 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2-azi 
no-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical 
scavenging assay were used for the evaluation of antioxidant activ-
ities, following the standard protocol [15,16]. In brief, 136 lL  of
100 lM DPPH and ABTS solution were mixed with different con-
centrations of plant extracts (10–160 lg/mL). After thorough shak-
ing, the absorbance was measured at 517 nm following 30 min of 
dark incubation for measuring DPPH scavenging and at 734 nm
after 10 min incubation for ABTS scavenging potency of the plant
extract. The IC50 values were measured through extrapolation
using curve fitting based on the dose–response data within the

The percentage of DPPH and ABTS scavenging was determined
by using [Equation 1]: 

1 

Radical Scavenging 
Absorbance of Control Absorbance of Test 

Absorbanc e of Control
100
2.5. Anti-cholinesterase assay

The assay was conducted using enzyme-sub strate kinetics
with Ellman’s reagent [17], a colorimetric compound that quan-
tifies thiol groups in a sample, also known as 5,5′-dithiobis(2-n 
itrobenzoic acid) (DTNB). DTNB is primarily utilized for pre-
column derivatization of thiols through a thiol-exchange reac-
tion, producing one equivalent of 5-thio-2-nitrobenzoic acid 
(TNB) and forming a thiol-TNB adduct. Samples (25–500 lg/ 
mL) were combined with 0.05 U/mL AChE or 0.5 U/mL BChE to 
initiate the reaction, which was incubated for 15 min at 25 °C.
Following this, 0.5 mM DTNB and either 1 mM acetylthiocholine
iodide or 1.5 mM butyrylcholine iodide were added. Two hun-
dred microliters of sodium phosphate buffer (pH 8.0) was
included to maintain a constant reaction volume. Absorbance
was measured at 412 nm using a 96-well plate reader, with
galantamine as the positive control and 1% DMSO as the nega-
tive control. Using [Equation 2], the percentage of inhibition of 
AChE and BChE was determined.

2 

Inhibition Absorbance of Control Absorbance of Test 
Absorbance of Control

100
2.6. Metal ion quantification

mined [19]. 

With a few modifications, the tri-acid mixture digestion 
method was used to quantify the major metal ions such as
Ca, Fe, Mg, Zn, Cd, Na, Cr, Pb, Cu, Mn and K [18]. Briefly, 1 g 
of finely powdered and filtered materials was mixed with 
25 mL of a 40:4:1 tri-acid solution (HNO3, HClO4, and H2SO4). 
At 80°C, the mixture was digested down until all of the vapors 
were expelled. Following cooling, the samples were diluted with
50 mL of deionized water and passed through the Whatman No.
42 filter paper. Using an Atomic Absorption Spectrometer
(SavantAA, GBC, Australia) and the direct air-acetylene tech-
nique, the elemental composition of the samples was deter-
3

2.7. HRMS analysis

High-resolution mass spectrometry (HRMS) was used to ana-
lyze the secondary metabolites in the methanolic extract of plants, 
considering the results of antioxidant and enzyme inhibitory 
potential. A stock methanol sample solution containing 1 mg/mL 
was filtered using a 0.22-lm syringe filter and then diluted with 
methanol to 0.5–6 mg/mL. The LC-MS analysis was conducte d
using the HPLC-ESI-Q-TOF-MS system with a 5 lL injection vol-
ume, and spectra were recorded within a mass range of 70–
1050m/z. Mzmine software was used to perform the spectrometric
analysis and to predict the chemical formula, including the accu-
rate mass calculation [20]. The identified compounds were then 
drawn using ChemDraw Professional 16.0.

2.8. Statistical analysis

Experiments were conducted in triplicate, and results were 
reported as mean ± standard deviation. The inhibitory concentra-
tion at which absorbance is 50% (IC50) values for antioxidant and 
enzyme inhibition activities were determined through linear
regression analysis through GraphPad Prism 6.0. The Principal
Component Analysis was performed in R Studio 2024.04.0 + 735.

3. Results and discussion

3.1. Total phenolic content (TPC) and total flavonoid content (TFC)

Our results revealed that methanol extracts from all parts 
examined showed noteworthy phenolic and flavonoid contents. 
The highest TPC was observed in the leaf extract (21.09 ± 1.6 mg 
GAE/g DW), followed by flower, stem, and root. Similarly, the
flower extract revealed the highest flavonoid content (100.81 ± 2.
1 mg QE/g DW), followed by root, leaf, and stem (Table 1). Flavo-
noids are generally the major constituents in the flower region of
plants [21], which is also the case with our findings with S. wight-
ianus DC. Phenolic and flavonoid molecules, which are widespread 
in many medicinal plants, are proven to have numerous biochem-
ical implications, such as anti-inflammatory, antibacterial, antiox-
idant, and anticancer effects [22]. These phytonutrients play a 
crucial role in combating oxidative stress, diabetes, cardiovascular 
diseases, skin disorders, inflammation, cancer, neurological condi-
tions, hypertension, and more [23–25]. 

3.2. Antioxidant activities

Antioxidant compounds from medicinal plants were known to 
help mitigate the risk of various diseases linked to reactive oxygen 
(ROS) and nitrogen species (RNS). Natural plant-based antioxi-
dants, including flavonoids and phenolic compounds, offer a
promising alternative to synthetic drugs [26]. The extract revealed 
the concentration-dependent inhibitory activities in DPPH and
ABTS assays. (Fig. 1, Fig. 2). Our results revealed that methanol 
extracts of the flower showed strong antioxidant activities within 
both DPPH and ABTS assays with IC50 values of 104.06 ± 2.05 and
67.69 ± 1.58 lg/mL, respectively. The IC50 values of leaf, root,
and stem samples for DPPH and ABTS were tabulated in Table 1. 
3.3. Anticholinesterase activities

Finding the effective natural inhibitors of AChE and BChE is of 
growing scientific interest for AD management. Inhibiting 
cholinesterase is a common treatment approach for several condi-
tions, including glaucoma, myasthenia gravis, and neurological dis-
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Table 1 
Total phenolic content, total flavonoid content, antioxidant activities, and enzyme inhibitory potential of the extract. Galantamine was used as a standard for AChE and BChE [48], 
and Gallic acid and Quercetin were used as a standard for DPPH and ABTS. Results were expressed as the mean ± standard deviation (Mean ± SD) of triplicate experiments.

Sample TPC 
(mgGAE/g DW)

TFC 
(mgQE/g DW)

IC50(lg/mL) 

DPPH ABTS AChE BChE 

SWF 20.81 ± 0.73 100.81 ± 2.1 104.06 ± 2.05 67.69 ± 1.58 247.51 ± 11.15 283.99 ± 17.005
SWL 21.09 ± 1.6 3.69 ± 0.6 105.79 ± 3.34 80.92 ± 3.5 275.34 ± 2.17 281.09 ± 14.64
SWR 16.3 ± 3.12 26.01 ± 3.1 316.38 ± 2.67 165.18 ± 3.43 316.61 ± 6.68 294.13 ± 3.02
SWS 16.92 ± 1.75 2.45 ± 0.7 289.77 ± 4.13 118.85 ± 1.63 293 ± 4.19 309.77 ± 11.65

− − − −  
− − − −  
− − − −  

Gallic acid 11.5 ± 2.4 33.61 ± 2.45
Quercetin 104.06 ± 2.05 67.69 ± 1.58
Galantamine 1.09 ± 0.02 26.27 ± 1.41

Fig. 1. Percentage scavenging activity of extracts (DPPH).

Fig. 2. Percentage scavenging activity of extracts (ABTS).

Fig. 3. Percentage of AChE inhibition by extracts.

Fig. 4. Percentage of BChE inhibition by extracts.
orders like dementia and AD [27]. Our results revealed that the 
stem, flower, root, and leaf of S. wightianus DC were potential 
sources of cholinesterase inhibitors to serve as a reference for
future research in natural chemical compounds (Fig. 3, Fig. 4). 
The crude flower extract showed the inhibitory potential toward 
AChE with IC50 values of 247.51 ± 11.15 lg/mL whereas the leaf
extract revealed good inhibitory potential toward enzyme BChE
with IC50 values of 281.09 ± 14.64 lg/mL (Table 1). The lower
4

the IC50 value, the more potent the substance is in displaying its
inhibiting property toward the enzyme [28]. Further purification 
and fractional separation of the metabolites will significantly 
increase the cholinesterase inhibitory activities. We next per-
formed the metal ion analysis as well as profiling of the major
chemical constituents responsible for such biological activities.
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3.4. Metal ions

Metal ions, including both macronutrients and micronutrients, 
play a crucial role in human health. Hence, proper quantification 
of major metal ions in the herbal extract is crucial for the manage-
ment of AD as well [29]. Furthermore, heavy metal contamination 
in the herbal extract was reported to have adverse health compli-
cations. Hence, proper quantificati on of essential micro and macro
nutrients, along with heavy metals, was equally important along
with biological activities [30]. Quantification of major ions was 
carried out using AAS. Results revealed the highest abundance of 
Ca in all the plant parts evaluated. Flower showed the maximum 
concentration of essential micronutrients like Ca > K > Na > Mg > 
Zn > Fe > Mn > Pb > Ni > Cu > Co > Cr > Cd in the given order, 
whereas root revealed Ca > Fe > K > Mg > Na > Zn > Mn >
Pb > Ni > Cu > Co > Cr > Cd in the given order. Furthermore, the leaf
exhibited the highest levels of essential micronutrients in the
following order: Ca > K > Fe > Na > Mg > Mn > Zn > Cu > Pb >
Ni > Co > Cr > Cd. The results were summarized in Table 2. Fe chela-
tion has demonstrated the potential to minimize oxidative damage
and slow the progression of the disease [31]. Chelators targeting Cu 
can disrupt Ab-Cu interactio ns, mitigating plaque formation and
neurotoxicity [32]. Disruptions in Zn homeostasis can affect synap-
tic dysfunction and neurotoxicity, emphasizing the importance of
its regulation through chelation [33]. 

Furthermore, Fe is also needed for numerous biological activi-
ties, such as gene regulation, electron transport in mitochondria,
oxygen supply, and DNA synthesis [34]. One essential nutrient that 
aids in preserving proper intracellular fluid levels is potassium. In 
addition, magnesium is the second most common intracellular
cation in the human body and is necessary for more than 300 enzy-
matic processes [35]. Trace amounts of chromium are necessary to 
promote healthier brain function, better metabolic processes in the 
human body, and control of blood sugar. Copper is a necessary
metal that the human body needs for the proper functioning of
the blood, bone, and many enzyme processes [36]. 

Lead is a widely recognized environmental pollutant, mainly 
originating from human activities, including industrial emissions,
vehicle exhaust, and the application of lead-containing paints
and pesticides [37]. Cadmium is another heavy metal of concern, 
frequently linked to agricultural activities like the use of phosphate
fertilizers and industrial waste releases [38]. The elevated levels of 
Pb and Cd found in the sample suggest substantial absorption of 
these heavy metals from the environment, raising alarms about 
potential impacts on both ecological systems and human health.
The European Pharmacopoeia guidelines for herbs consumed by
humans set the permissible limit for Pb at 10.0 mg/kg, reflecting
Table 2 
Results for the quantification of main elements. All studies were conducted in triplicat

Metals 
(ppm) 

SWF SWR

Co 11.8 ± 0.6 5.08 ± 0.46
Zn 59.4 ± 1.05 28.6 ± 2.5
K 2613.67 ± 49.96 781.1 ± 31.1
Mn 40.5 ± 0.80 37.2 ± 3.85
Cu 25.2 ± 2.07 27.38 ± 2.58
Cr 6.93 ± 0.46 4.55 ± 0.35
Ni 45.2 ± 0.98 22.53 ± 2.5
Pb 51.06 ± 1.006 15.66 ± 1.13
Na 1934 ± 56 717.217 ± 54.6
Fe 1209.53 ± 12.52 1288.67 ± 74.5
Cd 1.26 ± 0.11 0.41 ± 0.02
Mg 1315.5 ± 29.04 339.4 ± 21.9
Ca 52116.2 ± 919.09 12703 ± 685.713

5

a moderate threshold for heavy metal safety. For Cd, a stricter limit 
of 0.3 mg/kg is established, emphasizing its higher toxicity and
potential health risks even at low concentrations [39]. 

3.5. Principal components

Principal Component Analysis (PCA) was carried out to see the 
contribution of key variables of flowers, leaves, stems, and roots 
of S. wightianus DC based on the findings of TPC, TFC, DPPH radical 
scavenging, anti-cholinesterase assay, and metal ion quantifica-
tion. Two among the three obtained principal components (PCs)
with an eigenvalue greater than one were chosen based on the
Kaiser-Criterion to account for the total contribution of all the
results in the sample [40]. The amount of variance that each PC 
captures is indicated by its eigenvalue; a greater value depicts a 
greater amount of variance in the data. With an eigenvalue of
11.97, PC1 explains the largest variance in the data, accounting
for 63% of the variance.

Variables such as TPC, Na, Mg, and Pb exhibit a strong positive 
contribution along PC1, indicating their significant role in differen-
tiating the plant samples along this axis (Fig. 5). Conversely, vari-
ables like DPPH, ABTS, Cr, and AChE co-contribute to the negative 
side of PC1, suggesting an inverse relationship or trade-off between 
these two sets of variables. Along PC2, variables such as Mn, Cu, Zn, 
and BChE exert a strong influence, emphasizing their importance in 
distinguishing the samples along the vertical axis. SWL is heavily 
influenced by Mn, Cu, Zn, and BChE, aligning in the upper region
of the plot. TPC correlates strongly with Na and Mg, indicating that
sample SWF might possess higher phenolic content and mineral
levels, which is also the case in our data findings. The clustering
of antioxidant activities (DPPH and ABTS) suggests they share a
common role in plant bioactivity, with a strong relationship to TPC.

Micronutrients such as Mn, Cu, and Zn cluster positively along 
PC2, likely reflecting their connection to enzymatic or metabolic 
processes, such as those involving BChE. Antioxidants like DPPH 
and ABTS appear to function synergistically in managing oxidative 
stress, potentially balancing their interaction with phenolic con-
tent. Similarly, minerals like Mn, Cu, and Zn likely support enzy-
matic functions as cofactors, explaining their alignment with
BChE. The relationship between TPC and minerals points to an
interplay between antioxidant and phenolic pathways with nutri-
ent profiles in these plants.

In brief, PC1 primarily distinguishes variables based on antiox-
idant activity and phenolic content, while PC2 highlights the con-
tribution of enzymatic activity and micronutrients. The
positioning of the plant samples reflects their distinct biochemical
compositions and profiles.
e, and findings are provided as mean ± standard deviation (Mean ± SD).

SWL SWS 

9.26 ± 0.27 6.5 ± 2.2
68 ± 0.39 25.16 ± 2.65
900.68 ± 42.6 904.36 ± 36.7
143.36 ± 21.66 22.35 ± 0.25
29.8 ± 5.7 20.91 ± 0.07
5.86 ± 0.20 3.68 ± 0.25
25.71 ± 6.4 15.58 ± 0.02
22.63 ± 3.17 13.51 ± 0.45
705.7 ± 67.20 688.05 ± 16.88
1253.83 ± 30.03 350.483 ± 2.61
0.56 ± 0.07 0.38 ± 0.02
387.43 ± 20.7 368.25 ± 28.5
20403.2 ± 220.037 16717.1 ± 213.9
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Fig. 5. Bi-plot of PCA analysis.
3.6. Secondary metabolites

Profiling of the major metabolites was carried out using high-
resolution mass spectrometry (HRMS). HRMS chromatogram 
revealed the presence of diverse secondary metabolites. The anal-
ysis of the flower, leaf, stem and root of S. wightianus DC in both
positive and negative ion modes revealed the presence of diverse
secondary metabolites (Fig. S1–S9). Our results revealed the pres-
ence of different flavonoids and isoflavone molecules such as 
kaempferol (m/z: 286.0472), genistein (m/z: 270.0523), daidzein 
(m/z: 254.0567) and fisetin (m/z: 286.04695) in the examined plant 
parts. In addition to these flavonoids, other major metabolites 
including linoleic acid (m/z: 280.2393), chlorogenic acid (m/z:
354.09334), gingerol (m/z: 294.18221), and 12-oxo-phytodienoic
acid (m/z: 292.20291) were also detected in the extract (Table 3, 
Fig. 6).

The flavanol fisetin has been consistently observed to reverse 
cognitive decline in AD in mouse models [41]. Several AD-related 
characteristics, such as Ab plaque buildup, tau hyperphosphoryla-
tion, neuroinflammation, and oxidative stress, have been identified
as key targets for drug development [42]. Kaempferol and its
Table 3 
Bioactive secondary metabolites detected in flower, leaf, stem and root extract of S. wight

Compound Detected Molecular formula Expected weight

Linoleic acid C18H32O2 280.2402
Gingerol C17H26O4 294.1831
Kaempferol C15H10O6 286.0477
Chlorogenic acid C16H18O9 354.0950
Genistein C15H10O5 270.0528
Daidzein C15H10O4 254.0579
Fisetin C15H10O6 286.0477
12-Oxo phytodienoic acid C18H28O3 292.2038

6

derivatives have been scientifically proven to counteract Ab-
induced damage, thereby alleviating symptoms of neurodegenera-
tive diseases [43]. Genistein has been found to have neuroprotec-
tive effects and can cross the blood–brain barrier [44]. Daidzein 
is known to prevent the degradation of dopamine receptor-
stimulating neurons in the brain, improving neurodegenerative
disease symptoms in mice [45,46]. Gingerol is crucial in improving 
memory performance, promoting long-term hippocampal 
enhancement, and accelerating neural growth by upregulating
nerve growth factor (NGF) expression [47]. Additionally, 12-oxo 
phytodienoic acid suppresses neuroinflammation by inhibiting 
p38 MAPK and Nf-jB signaling, which are the hallmarks of AD,
in LPS-activated cells [48]. Linoleic acid prevents the neuroinflam-
mation presented in both in vitro and in vivo models by delaying
the neurodegeneration of dopaminergic neurons in mice [49]. 
Chlorogenic acid has demonstrated neuroprotective effects in rat 
brain homogenates by reducing the activity of acetylcholinesterase
and butyrylcholinesterase [50]. A total of 32 phytochemicals, 
including chlorogenic acid, luteolin, and various flavonoid classes, 
were also identified previously, in the different tissues of S. oler-
aceus [51]. The phytochemicals in Sonchus could serve as a valuable
ianus DC, where −ve is the negative electrospray ionization technique in HRMS.

Observed weight Error 
(ppm) 

RT 
(min) 

Mode 
(ESI) 

Ref 

280.2393 −3.32 22.428 −ve [52] 
294.18221 −3.04 17.08 −ve [53] 
286.0472 −1.78 11.825 −ve [54] 
354.0933 −4.93 8.395 −ve [55] 
270.0523 −1.74 12.737 −ve [56] 
254.0567 −4.88 11.467 −ve [56] 
286.0469 −2.74 11.832 −ve [57] 
292.2029 −3.18 18.1 −ve [57] 

move_t0015
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Fig. 6. Major metabolites found in the S. wightianus DC.
source for developing natural, multi-targeted therapeutics against 
neurodegenerative disorders, leveraging their diverse neuroprotec-
tive actions to counteract key pathological features of AD.

4. Conclusion s

This study explored the biochemical properties and determined 
the elemental composition of different parts of S. wightianus DC. 
Among all parts, extracts from flowers and leaves exhibited good 
potential as antioxidants and cholinesterase enzyme inhibitors. 
The analyzed plant parts were a rich source of essential metal ions,
highlighting their health benefits. Additionally, eight different sec-
ondary metabolites, mostly flavonoids, were identified, which
were also reported to be effective against AChE and BChE; hence,
further purification and isolation of pure compounds is equally
7

important to identify the most effective metabolites for cholines-
terase inhibitors. Our research opens up the possibilities in the
future to further investigate S. wightianus DC against AD.
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