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ABSTRACT

Background: In cancer, the process of anoikis is intimately associated with the emergence and progres-
sion. N6-methyladenosine modification and m6A modification play an important role in regulating long
non-coding RNAs. The liver hepatocellular carcinoma patients’ data, including clinical and prognostic
data, were obtained via The Cancer Genome Atlas database. The univariate, multivariate Cox and Least
Absolute Selection Operator (LASSO) regression were performed to gain anoikis- and m6A-related
IncRNAs. The Kaplan-Meier method was employed to assess the overall survival rate for groups of
high- and low risks.

Results: A signature comprising six anoikis- and m6A-related IncRNAs was constructed: AL117336.3,
LINC01138, Z83851.1, NRAV, CASC19 and AC009283.1. The clinicopathological variables, the anoikis-
and m6A-related IncRNA signature demonstrated superior diagnostic efficacy, with an area under the
receiver operating characteristic curve of 0.810. In the high-risk group, the overall survival was shown
to be inferior to that of in group of low risk, while patients were classified by distinct clinicopathological
variables. The ssGSEA and CIBERSORT immune analysis demonstrated that the predictive signature was
significantly associated with liver cancer patients’ immune status. The chemotherapy drugs ATRA,
AUY922, bexarotene, gemcitabine, mitomycin-C, and PHA have been found to have greater sensitivity
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in treating high-risk patients. qRT-PCR showed that Z83851.1, NRAV and CASC19 IncRNAs were associ-
ated with poor prognosis and were high-risk factors. AC009283.1 IncRNA may have anti-cancer proper-

ties.

Conclusions: The predictive signature is capable of independently predicting the prognosis of liver cancer
patients for understanding the mechanisms of anoikis- and m6A-related IncRNAs in liver hepatocellular
carcinoma and offering clinical guidance to patients with liver cancer.
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cators in liver hepatocellular carcinoma. Electron ] Biotechnol 2026;79. https://doi.org/10.1016/j.ejbt.
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1. Introduction

Among the most common cancers, hepatocellular carcinoma
(HCC) was ranked sixth, being the third most prevalent cause of
mortalities associated to cancers worldwide and having an overall
survival rate at five years below 12% [1]. The HCC patients with
good liver function do not experience cirrhosis; the hepatic resec-
tion (RES) can be the traditional treatment [2]. However, despite a
nearly 70% five-year survival rate, recurrence rates after surgery
are high [3]. For patients with multiple-site tumor recurrence or
underlying liver cirrhosis, repeated hepatectomies are often not
appropriate [2]. Significant progress has been made in cancer
immunotherapies, especially for the blockade of the PD-1 and
PD-L1 pathways, which has been proven to enhance hepatocellular
carcinoma patients’ five-year survival rate [4]. Nevertheless, the
precise molecular mechanisms underlying hepatocellular carci-
noma remain poorly understood, and PD-1/ PD-L1 blockade medi-
cation therapy efficacy was limited, with just 20-30% of patients
deriving benefit [5]. So, it is of paramount importance to identify
additional prognostic markers to guide the stratification of hepato-
cellular carcinoma patients based on risk and personalize therapy
to better survival [6].

Normal cells detach from native extracellular matrix (ECM) and
undergo programmed cell death, referred to name anoikis [7].
Physiologically, it effectively eliminates dislodged cells and inhi-
bits the adhesion of detached cells to other tissues, thereby exert-
ing a pivotal influence on tissue homeostasis and development [8].
However, it is also a participant in pathological processes and has a
strong correlation between this factor and human cancer develop-
ment [9]. A vital element of cancer metastasis is how cells in the
circulatory system survive in distant organs without native ECM
contacts, necessitating the capacity to resist anoikis [10]. In stom-
ach, lung and breast cancers, the deregulation to resist anoikis has
been documented [11]. It has been demonstrated that overexpres-
sion of NADPH oxidase 4 is related to the increasing generation’
reactive oxygen species as well as upregulated expression of Epi-
dermal Growth Factor Receptor, which together led to gastric can-
cer anoikis resistance and enhanced its metastatic potential
[12,13]. Furthermore, anoikis resistance influences treatment
resistance. Even though in the progression of hepatocellular carci-
noma, anoikis is an essential factor, its prognostic value in HCC has
not been subjected to a comprehensive evaluation.

In higher eukaryotic cells, the most prevalent, widespread, and
well-preserved internal cotranscriptional modification is N6-
methyladenosine (m6A). The m6A modification is subject to mod-
ification via m6A methyltransferases and removal by demethylases
or recognized via m6A binding proteins [14]. Furthermore, they
can also be the dynamic deposition of this mark for mRNAs and
other forms of nuclear RNA [15]. vir like m6A methyltransferase

associated (VIRMA), induces N6-methyladenosine-dependent
post-transcriptional modification of GATA-binding protein 3
(GATA3) and is involved in the progression of liver cancer [16].
WT1-associated protein (WTAP), via m6A-HuR-dependent epige-
netic silencing of ETS proto-oncogene 1(ETS1), has been shown
to be a promoter of hepatocellular carcinoma progression [17].
alkB homolog 5(ALKBH5) was found to be overexpressed in several
cancer types, promoting cancer emergence and development,
including regulating immune cell infiltration of tumors. In some
tumors, ALKBH5 has been suggested as a potential prognostic
and immunotherapeutic biomarker [18]. In hepatocellular carci-
noma, long non-coding RNA miR-503HG is the prognostic indicator
of tumor metabolism through the modulation of the HNRNPA2B1/
NF-xB pathway [19].

RNA molecules cannot encode proteins, and under two hundred
nucleotides are classified as long noncoding RNAs (IncRNAs) [20].
These molecules significantly influence gene expression regulation,
transcripting genes, translating proteins, modifying proteins and
other cellular mechanisms [21]. LncRNAs can affect cancer by mod-
ulating cellular signaling pathways, contributing to tumorigenesis,
metastasis, prognosis, and diagnosis [22]. The long noncoding
RNAs’ expression profile has been shown to act being a prognostic
biomarker in cancers, improving patient survival rate [23]. Non-
coding RNAs are vital in tumor proliferation and migration, which
may be regarded as a prospective biomarker [24]. Hence, studying
the IncRNAs’ expression may help assess the hepatocellular carci-
noma prognosis.

We developed a predictive signature utilizing anoikis-
associated long noncoding RNAs in this investigation. The study
aimed to evaluate the biomarker’s utility in the prediction of prog-
nosis, diagnostics, chemo-response and immune infiltration of
tumor for hepatocellular carcinoma patients and conduct internal
validation. The gene sequence enrichment analysis was also used
to find any underlying mechanisms.

2. Materials and methods
2.1. Datasets and patients

As shown in Fig. 1, we downloaded related clinical and prognos-
tic data via The Cancer Genome Atlas (https://www.cancer.gov/
ccg/research/genome-sequencing/tcga). RNA-seq data are stan-
dardized according to the transcripts per million mapped reads’
fragments per kilobase (FPKM). A total of 377 patients containing
IncRNA expression levels as well as survival time data were
enrolled in this study. Also, 794 anoikis-related genes and 350
m6A-related genes were sourced from the Gene Cards database
(https://www.genecards.org/) [25].


https://doi.org/10.1016/j.ejbt.2025.100701
https://doi.org/10.1016/j.ejbt.2025.100701
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
move_f0005
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.genecards.org/

P. Yu, S. Jing and S.K. Dhillon

[ Anoikis and mBA related genes from the J [

GeneCards website

Electronic Journal of Biotechnology 79 (2026) 100701

Clinical and RNA expression data from
TCGA

l

[ {

DEGs of anoikis and m6A related genes ]

[ KEGG and GO analysis ]

l

[ Identifing INcRNAs associated with anoikis and m6A

related genes ]

signature from IncRNAs of anoikis and m6A related genes

[ Cox and Lasso regression analysis and Constructing predicting ]

l

1

Survival analysis, ROC curve, Internal validating predicting [ Drug therapy’s efficacy ]
Nomogram signature
[ Functional analysis ]

Fig. 1. The research flowchart. TCGA for The Cancer Genome Atlas, DEGs for differentially expressed genes, KEGG for Kyoto Encyclopedia of Genes and Genomes, GO for Gene
Ontology, IncRNAs for long noncoding RNAs, and ROC for receiver operating characteristic.

2.2. Anoikis- and m6A-related differentially expressed genes’
functional enrichment analysis

For acquiring of anoikis- and m6A-related differentially
expressed genes, we set the screening criteria of value of an adj.
p-value less than 0.01 and a value of |log FC| greater than 1. The
packages “clusterProfiler” and ‘“ggplot2” were utilized of Gene
Ontology and Kyoto Encyclopedia of Genes for Genomes analyses.

2.3. Establishing a predicting signature for anoikis- and m6A-related
IncRNAs

The limma package was applied to differentially expressed
genes. With the screening criteria p < 0.001 and |R?| > 0.4, we
obtained 286 IncRNAs associated with anoikis and m6A. In order
to recognize long noncoding RNAs that were related to hepatocel-
lular carcinoma patients’ prognosis, initially, we conducted uni-
variate and multivariate Cox regression analysis and
subsequently Least Absolute Shrinkage and Selection Operator
(LASSO) regression analysis (minimum error or 1-SE rule via 10-
fold cross-validation). The formula employed for the calculation
was [24]:

B : risk code = ZL ) Bi = (expression of mRNAI)

2.4. Constructing nomogram

To predict survival rates at one-, three- and five-year intervals, a
nomogram was developed. Furthermore, a calibration curve was
employed for assessing the correlation between predictive and
observed survival rates.

2.5. Anoikis- and m6A-related IncRNAs predicting signature’ functional
enrichment analysis

The patients were sorted into groups of low risk and high risk
via their risk score’s median value. For identifying the pathway

genes that exhibited significant enrichment, we employed Gene
Sequence Enrichment Analysis [26]. The Gene Sequence Enrich-
ment Analysis has been performed with 4.1.0 version (https://
www.gsea-msigdb.org/gsea/index.jsp). In order to ascertain statis-
tical significance, a value of less than 0.25 was set to be the false
discovery rate, while the p-value was set at a value of less than
0.05. Additionally, the package of GSVA was used for single-
sample Gene Set Enrichment Analysis (sSGSEA). Thirteen
immune-related pathways’ activities, as well as sixteen immune
cells’ infiltration scores, were computed [27].

Immune infiltration analysis was performed using CIBER-
SORT.22 Immune cells including macrophages M2, plasma cells,
neutrophils, mast cells activated, T cells CD8, macrophages M1, T
cells gamma delta, B cells memory, monocytes, B cells naive, T cells
follicular helper, NK cells activated, T cells CD4 memory activated,
T cells CD4 naive, NK cells resting, T cells regulatory (Tregs), den-
dritic cells activated, eosinophils, macrophages MO, T cells CD4
memory resting and mast cells resting. The results were analyzed
by programmatically filtering the results according to the cut-off
criterion of adjusting the p-value less than 0.05 and using the bar-
plot, corrplot and ggplot2 packages in R version 4.1.0 for visualiza-
tion of each sample. The corrplot package calculates the
relationship between the gene expression matrix and the immune
cells [28].

2.6. Predicting signature for predicting clinical treatment response role

Genes for immune checkpoints were obtained from the litera-
ture, including 47 immune checkpoint genes. Analysis of immune
checkpoints was performed using the R software packages limma,
reshape2, ggplot2, ggpubr and beeswarm to extract significantly
different genes, and high- and low-risk samples were analyzed
for differences in immune checkpoint content and filtered accord-
ing to the criterion of p < 0.05 [29,30,31]. The FPKM data were
transformed into transcripts per million (TPM), and the data were
normalized log2(TPM + 1) while retaining samples with recorded
clinical information. We predicted the chemotherapy response
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for each sample based on the largest publicly available pharma-
cogenomics database (Genomics of Drug Sensitivity in Cancer
https://www.cancerrxgene.org/). The prediction process was
implemented by the R package pRRophetic, in which the half-
maximal inhibitory concentration (IC50) of the samples was esti-
mated by ridge regression, all parameters were set at default val-
ues, the batch effect of combat and the tissue type of all were
used, and the replicate gene expression was summarized as the
mean value [32,33].

2.7. Validation of IncRNAs in several associated cell lines

Validation using associated cell lines was done to confirm the
expression of the 6 IncRNAs between normal liver and liver cancer
cell lines. The LX-2 human hepatic stellate cell lines have so far
been used as a control group. The experimental groups were
HepG2 and HuH7 liver cancer cell lines. LX-2 and Huh7 were
grown in Gibco DMEM medium (with streptomycin and 10% fetal
calf serum, 1% penicillin). RNA was extracted using Vazyme’s Super
FastPure Cell RNA Isolation Kit RC102-01. The reagent for the
reverse transcription system (HiScript IV RT SuperMix for qPCR
(+gDNA wiper) R423-01 from Vazyme) was used for cDNA extrac-
tion. Quantitative real-time PCR was performed (PCR Taq Pro
Universal SYBR qPCR Master Mix Q712-02/03 Vazyme) and 10
microM primers on QuantStudio 7 Flex Life Technologies Holdings
Pte Ltd. The relative expression values have been normalized to the
level of the reference gene (GADPH). Table S1 contains the primer
pairs.

2.8. Statistical analysis

We conducted the statistical analyses using R (version 3.6.3).
We investigated the connection between anoikis-associated long
noncoding RNAs and overall survival. Univariate and multivariate
Cox regression analyses were applied to find the anoikis-related
IncRNAs that could be used to develop a predictive signature.
The log-rank test and the Kaplan-Meier method were used to con-
trast overall survival for groups of high risk and low risk. ROC
curves were constructed, and the survivalROC package was used
to calculate AUC values. The single-sample Gene Set Enrichment
Analysis was applied by the package of GSVA.
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3. Results
3.1. Enrichment analysis for anoikis- and m6A-related genes

By differentially expressed genes, we found 286 anoikis- and
m6A-related genes, comprising 258 upregulating genes and 28
downregulating genes (Fig. 2A). KEGG pathway analyses showed
anoikis- and m6A-related DEGs are enriched in the following
genes: MAPK signaling pathway, Focal adhesion, signaling path-
way of PI3K-Akt, infection of Human papillomavirus, AGE-RAGE
signaling pathway as the top five upregulated DEGs, while the Cell
cycle, Melanoma and p53 signaling pathway were downregulated
(Fig. 2B). For biological processes, GO analysis indicated that differ-
ence was focused on negative regulating mitotic cell cycle, the cell
aging, negative regulating cell cycle process, etc. As for cellular
components classification, the genes of differentially expressed
were mainly enriched in nuclear chromatin, focal adhesion, hete-
rochromatin, etc. As for the molecular function, the gene’s differ-
ence was mainly shown in serine/threonine kinase activity,
transcriptional corepressor activities, and RNA polymerase II tran-
scription factor binding (Fig. 2C).

3.2. Related IncRNAs predicting signature

As Table S2 shows, 953 anoikis- and m6A-related long noncod-
ing RNAs were identified. Univariable Cox regression analysis
shown 103 IncRNAs related to prognosis in HCC patients. Six
anoikis- and m6A-related long noncoding RNAs were mostly
related to survival in a LASSO regression hazards model
(AL117336.3, LINC01138, Z83851.1, NRAV, CASC19, AC009283.1).
Fig. 3A illustrates six anoikis- and m6A-related long noncoding
RNAs’ expression levels in the patients. Furthermore, the long non-
coding RNAs were visualized with the Cytoscape software and the
ggplot2 R package. As illustrated in Fig. 3B, LINCO1138 and NRAV
assume pivotal roles in the IncRNA-mRNA co-expression network
(|R?| greater than 0.4, p less than 0.001).

3.3. Predicting the signature and prognosis of HCC patients’ correlation

Overall survival time for the group of high risk was mostly
shorter compared to that of the group of low risk (shown in
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Fig. 2. Tissues of cancer and adjacent for GO and KEGG analyzing anoikis- and m6A-related DEGs. (A) 286 DEGs volcano plot in HCC. Blue, red dots represent
downregulated and upregulated genes. (B) The DEGs of KEGG analysis. (C) The DEGs of GO analysis. (FC for fold change; fdr for false discovery rate; BP for biological process;
CC for cellular components; MF for molecular function). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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NRAV

Fig. 3. Expression levels of predicting Signature in the six anoikis-, m6A-related IncRNAs and IncRNA-mRNA network. (A) The six IncRNAs expressed in HCC compared
to normal tissues. (B) Prognostic IncRNA co-expression network. Orange Rhombus represents IncRNAs, and blue Ellipse shows mRNAs. (C) Sankey diagram for prognostic the
IncRNAs. N, typical; T for tumor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4A, p = 6.2191e-10). Five-year survival rates for the groups of
high risk and low risk were 26.3% and 64.5%, respectively. Fig. 4B
illustrates risk scores for groups of high risk and low risk. With risk
score enhanced, patient deaths were also enhanced (Fig. 4C). The
univariate cox regression analysis demonstrated that age, stage
as well as risk score were considerably related by patients’ overall
survival (Fig. 4D). The multivariate cox regression analysis results
indicated that risk score and age were independent predictors with
overall survival within patients (Fig. 4E). The AUCs of one-, three-,
and five-year survival were 0.78, 0.743 and 0.801 accordingly,
which shown model demonstrating reliable predictive perfor-
mance (Fig. 4F). The risk score’ area under the curve was 0.810,
which demonstrated a superior predictive capacity for HCC
patients compared to clinicopathological variables (Fig. 4G). The
distinctions in clinicopathological variables for groups of high risk
and low risk were analyzed. N stage (p < 0.05), M stage (p < 0.05),
stage (p < 0.01) and status (p < 0.001) in these two groups shown
significant differences, which means the high and low groups do
have statistical significance (Fig. 5).

3.4. Model line diagrams and calibration charts

A nomogram was constructed, incorporating clinicopathological
variables as well as the risk score, for predicting the one-, three-,
and five-year prognosis of patients of liver hepatocellular carci-
noma (Fig. 6A). The calibration curves demonstrated high consis-
tency for actual OS rates as well as predicted survival rates at
one-, three-, and five-year intervals (Fig. 6B-D).

3.5. Predictive signature and prognosing HCC patients in different
clinicopathological variables relationship

The aim was to find the relation between the predicting signa-
ture and the HCC patients’ prognosis classified by various clinico-

pathological variables. The HCC patients were sorted into
different groups via age, gender, grade, T-stage and N-stage. The
patients’ median overall survival in groups of high-risk was consid-
erably shorter than that of patients in group of low risk (Fig. 7).

As the Fig. 8 shown, AC009283.1, AL117336.3, CASC19,
LINCO1138, and NRAV have a significant difference in high and
low groups. (p value 0.007321729, 0.000156933, 0.004522616,
0.000497891 and 2.71E-08, respectively).

3.6. Internal validation of predictive signature

In the two cohorts, as Table 1 shows a comparison of patients’
demographic characteristics. With findings observed in the overall
dataset, in Fig. 9A, in the first internal cohort for the group of high-
risk, the OS rate was inferior to that of patients in the group of low-
risk (p = 7.8379e-07). Fig. 9B shows a poorer prognosis for the
group of high risk than for the group of low risk within the second
internal cohort (p = 0.000266). ROC curves demonstrated favorable
predictive performance for two cohorts. AUCs were 0.833, 0.722
and 0.817 for one-, three- and five-year survival, for first internal
cohort (Fig. 9C). Fig. 9D shows that the AUCs for the second inter-
nal cohort at one, three, and five years were 0.711, 0.773, and
0.805.

3.7. Gene enrichment analysis

Our findings demonstrated that the group of high-risk shows
considerable enrichment within some biological pathways, like cell
cycle signaling, purine metabolism signaling, pyrimidine metabo-
lism signaling, RNA degradation and selenoamino acid metabolism
(shown in Fig. S1, Table 2). This suggests that patients at high risk
were linked to RNA and DNA metabolism pathways, indicating that
patients at high risk are tightly associated with RNA and DNA
metabolism-associated pathways.
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3.8. Immune-related functions and immune cell infiltration

For levels of several immune cell populations in two groups, the
findings showed considerable differences including activated den-
dritic cells, B cells, cells of CD8* T, immature-dendritic cells, neu-
trophils, natural killer, plasmacytoid-dendritic cells, cells of T
helper, cells of T follicular helper, tumor-infiltrating lymphocytes
and cells of T regulatory (Fig. 10A), and the immune function
scores for chemokine receptor, checkpoint, inflammation-
promoting, co-stimulation and co-inhibition of T cell, Type II IFN
Response, as well as human leukocyte antigen, were found to be
higher with group of high risk than that of low risk (Fig. 10B).

The CIBERSORT algorithm was used to explore the relevance
between the risk score and tumor immune cell infiltration. Patients
with HCC in the high-risk group had higher proportions of MO
macrophages (p < 0.001), M1 macrophages (p = 0.006), activated
dendritic cells (p = 0.033), neutrophils (p = 0.024), whereas naive
B cells (p = 0. 003), CD8 T cells (p = 0.042), CD4 memory T cells
(p = 0.015), follicular helper T cells (p = 0.007), activated NK cells
(p = 0.032) and resting mast cells (p = 0.004) were negatively
related to the risk score (Fig. 10C). This shows that our signature
is not only a prognostic marker but also reflects the level of
immune cell infiltration, as the abundant immune infiltration
observed in the low-risk group partly reflects the reduction in
malignancy and the effects of various treatments.

3.9. Differences between high-risk and low-risk groups in response to
immunotherapy and chemotherapy therapy

Previous research has pointed to immune checkpoint blockade
through epigenetic mechanisms as a promising strategy for the

treatment of HCC, which may affect prognosis. We analyzed the
expression levels of immune checkpoint genes between the high-
risk and low-risk groups; in Fig. 11A, we identified 29 differentially
expressed genes of immune checkpoint and its ligand between the
high-risk and low-risk groups. CD276, LGALS9, CD80, TNFRSF9,
LAIR1, TNFSF9, HAVCR2, CD86, TNFRSF4, HHLA2, VTCN1 were
highly expressed in the high-risk groups. The findings indicated
immunotherapy was associated with a greater chance of survival
in patients at higher risk.

Analyzing the relationship between the predicting signature
and conventional chemotherapy effectiveness in hepatocellular
carcinoma, the IC50 of ATRA, AUY922, bexarotene, gemcitabine,
mitomycin-C, and PHA.665752 were lower in the high-risk group
(Fig. 11B=G). It is beneficial to study tailored treatment plans that
are suited to patients in classifications of high and low risks.

3.10. Validation of predicted gene expression by qRT-PCR

7Z83851.1, NRAV and CASC19 IncRNAs were upregulated in
HepG2, HuH7 compared to the control group of LX-2 (Fig. 12),
whereas the AC009283.1 was downregulated in the cells.
AL117336.3 and LINC01138.3 showed no difference in the cell
lines. The results of the analyses were further validated experi-
mentally, and prognostic analyses showed that Z83851.1, NRAV
and CASC19 IncRNAs were related to poor prognosis and were
high-risk factors. AC009283.1 IncRNA may have anti-cancer
properties.

3.11. Chemotherapy drug validation experiment

Drug experiments were selected based on the literature. The
final concentration was one micromole. Cell lines were used.


move_f0050
move_f0055
move_f0060

P. Yu, S. Jing and S.K. Dhillon

Paneniz wih aoe=s

[

A

Pasiwns with Sage |

SO

Palients with GJ 4

A% - gh = o

NN T
Tmenear:

Fams £ oMow g 2 2 0
EL R R W A u §
T ] oA

Tmcowars;

Fig. 7. Kaplan-Meier survival curves were constructed via clinicopathological variables in groups of high and low-risk. (A-B) For Age. (C-D) For Sex. (E-F) For Stage. (G-

atores wiih 33264

o - 1 =

Fatnts wih Stas -1
-

PR—
¥
S by
2

Electronic Journal of Biotechnology 79 (2026) 100701

Sanents i MALE

D

g -

Buniva rebk Iy

T T T T T L ]
agning
grans s » _ 1 M " . .
FLE A | o 4§ [
o i s L B T
Tt
Patents wit1 MO K Pulicrits with @1 L Putinis wt1 G2
[y [ R ]

I 1 »

z z ¥

for £un HE

Bom é-y Eas

H ]

2% paom ol peooar £ 0om

am n
2 T ) 3 1 3 % 1 % & F & 8 K iz N

Sutesd Timeizesrs)
303 2 0 " 2 ¢ 9 o T . )
I - Fale 3 3 ¢ 4 188909 L P S A
£ 0 v w B ] 1 4 3 6 L K 1 2 3 & 5 6 ¢ @& ' W
Trwiyeats) ety

H) For T stage. (I-]) For M, N stage. (K-M) For G stage.

A

ACCOZBI 1 == Ngn = low

ALTI7E363 == hgn HR low

_ 100 _ 100
g g
3075 5075
H 3
m o
<050 é‘”’“
8
£0s ¢
g | p=0007 2°”| p<0.001
[ [
000 0.00
0 1 2 3 4 5 6 7 8 9 10 6 1 2 3 4 5 6 7 B 8 10
Time{years) Time(years)
= o
ghcrmwn--‘-131| 0 §mgh&e:'795?||oooo
§m1m|fgg‘1 AR R N I tw1w]ﬁlﬂgﬁmuﬂ 3 3 2 1
@ o 1 2 5 a4 5 & 7 8 8§ 1 3 0 1 2 3 4 5 6 7 8 9 10
< Time(years) < Time(years)
LINCO1138 == high == low NRAV == hoh = kv
_ 100 _ 1w
[} [
30.75 %().Ib
8 8
T 050 - T 050
° K=}
2 ey 2
2025 .2
5 p<0.001 5% p<0.00
g o
o o
0.00 0.00
0 1 2 3 1 5 6 7 8 9 10 0 1 2 8 4 5 86 7 8 9 10
Time(years) Time(years)
©
2 >
S hish{242 109 54 6 8 5 1 1 1 1 <hah{g7 28 9 5 3 0 O 0 0 0 O
Qlowi{130 79 32 21 16 10 5 2 2 1 0 Zlowi{275 160 77 46 29 18 10 3 3§ 2 1
%(112345«;/3910 o 1 2 3 414 5 6 7 B 9 10
Time(years) Time(years)

c

CASCI9 == nigh == low

_ 100
g
€ 075
o
g
= 050
S
®
123
025
g
a
000
) 1 2 3 4 5 L] 7 8 9 10
Time(years)
a
Ohighy42 11 6 3 1 1 1 0 0 0 0
@ low{330 177 31 17 9 38 3 2 1
S o0 1t 2 3 4 5 6 7 8 9 10

Time(years)

Fig. 8. Progression-free survival in groups of high and low risks for each gene. (A) AC009283.1 (B) AL117336.3 (C) CASC19 (D) LINC01138 (E) NRAV.

8



P. Yu, S. Jing and S.K. Dhillon Electronic Journal of Biotechnology 79 (2026) 100701
Table 1

Analysis was performed using quantitative Reverse Transcription
Patients’ clinical characteristics in different cohorts.

Polymerase Chain Reaction (qRT-PCR).

Variables Entire Validation As shown in Fig. 13, comparing with Fig. 12 results, the drug
TCGA dataset  First cohort  Second cohort dose indeed have a specific effect in downregulgting lchNAs,
(n = 342) (n=172) (n = 170) CASC19, LINC01138, NRAV, and Z83851.1 expression, which has

Fustat (%) been downregulated, while AL117336.3 has been upregulated.

Alive 223 (65.20%) 112 (50.22%) 111 (49.78%) However, finally, it has a certain inhibitory effect on liver cancer

Dead 119 (34.80%) 60 (50.42%) 59 (49.58%) cells.

Age (%) . .

<65 216 (63.16%) 115 (53.24%) 101 (46.76%) 4. Discussion

>65 126 (36.84%) 57 (45.24%) 69 (54.76%)

Gender (%)
FEMALE
MALE

Stage (%)

109 (31.87%)
233 (68.13%)

53 (48.62%)
119 (51.07%)

56 (51.38%)
114 (48.93%)

The hepatocellular carcinoma was ranked sixth, being the third
most prevalent cause of mortalities, of which the five-year overall
survival rates are relatively low. The anoikis’ role in cancer is com-
plex and multifaceted, and further research is required to elucidate
its mechanisms fully. Anoikis has been regarded as a critical ele-

Stage [ 161( (47~08;/>) 87 25404%% 74 E45~95%§ ment in cancer development and progression in a growing number
Stage Il 77 (22.51% 31 (40.26% 46 (59.74% . : :
stage Il 80 (23.39%) 40 (50.00%) 40 (50.00%) of sFltlFlles [7,34,35,36]. T_here fls a dearth of re;eal'rch in the field o?
Stage IV + unknown 24 (7.01%) 14 (8.1%) 10 (5.89%) anoikis and prognostication of cancer, given the imited number o
studies conducted in this area. However, recently research has
T (%) commenced which predicts the prognosis of cancer patients by
T 168 (49.12%) 90 (53.57%) 78 (46.43%) constructing anoikis-related long noncoding RNA predictive signa-
T 84 (24.56%) 35 (4167%) 49/(58.33%) tures [37,38,39,40]. There are a few reports on applying anoikis
3 112 (50.68%) 51 (45.54%) 61 (54.46%) u 126,39,40]. [eW TepC pplying anoikis-
T4 + unknown 74 (32.75%) 39 (52.70%) 35 (47.30%) and m6A-related IncRNAs predictive signatures to predict the

M (%)
MO
M1 + unknown

N (%)
NO
N1 + NX + unknown

244 (71.35%)
98 (28.65%)

239 (69.88%)
103 (30.12%)

116 (47.54%)
56 (57.14%)

113 (47.28%)
59 (57.28%)

128 (52.46%)
42 (42.86%)

126 (52.72%)
44 (42.72%)

HCC patients’ prognosis [41]. The present study demonstrated
the integration of anoikis with m6A-related IncRNAs, which is a
novel approach in predicting HCC disease prognostication. This
study initially identified 286 differentially expressed genes related
to anoikis. Findings indicated that the X protein of hepatitis B virus
has been demonstrated to inactivate the p53 gene by the p38/
MAPK pathway, thereby inducing primary liver cancer [42]. It is
shown that p53 can induce anoikis in cancer cells via activating

G (%) . o -

Gl 53 (15.50%) 34 (64.15%) 19 (35.85%) the apoptotic program. The results indicated that anoikis-related
G2 161 (47.08%) 80 (49.70%) 81 (50.31%) genes may change the hepatocellular carcinoma progression by
G3-4 123 (35.96%) 55 (44.72%) 68 (55.28%) the p53 signaling pathway [43]. Nevertheless, in HCC, further
Unknown 5 (1.50%) 3(60.00%) 2(40.00%)

A o oo 5 o B Risk S8 High risk B8 Lowrisk
1.00¢
1.00
z 5
£ or g om
3 8
1 F-1
8 ]
& 050 a ow
5 5 3 2
@ %] [ _783700697234110-07 @ "1 b 0.000266412431562668
0.00 0.00:
o 1 4 ] 8 L] 9 10 0 1 2 3 8 6 7 8 9 10
Time(years) Time(years)
FHighrisk{ 86 52 26 18 10 5 3 1 1 1 0 FHighnsk{ 79 53 26 14 11 6 5 2 2 1 0
@ lowrnsk{ 868 74 36 26 19 12 8 2 1 1 1 o Lowrisk{ 91 75 38 31 23 17 9 3 2 0 0
6 1 2 3 5§ 7 & & 10 % 1 5 3 1 5 & 7 3 5 10
Time(years) Time(years)
c - D o .
@ ©
o o
> © | > ©
£ o 5 o
G B
5 < 5 3
Do S 34
o N
o AUC at 1 years: 0.833 < AUC at 1 years: 0.711
—— AUC at 3 years: 0.722 —— AUC at 3 years: 0.773
o | |- —— AUC at 5 years: 0.817 o | —— AUC at 5 years: 0.805
S )
T T T T T T © T T T T T T
0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0
1-Specificity 1-Specificity

Fig. 9. In the whole TCGA dataset, the internal validation of the predicting signature for OS. (A) The first internal cohort ‘Kaplan-Meier survival curve and (B) The second
internal cohort Kaplan-Meier survival curve. (C) The first internal cohort’s curve and AUCs at one-year, three-year and five-year survival. (D) The second internal cohort’s
curve and AUCs at one-year, three-year and five-year survival.


move_f0065

P. Yu, S. Jing and S.K. Dhillon

Electronic Journal of Biotechnology 79 (2026) 100701

Table 2
Enriched gene sets for a group of high risk.
Gene set ES NES NOM p-value FDR g-value
pyrimidine metabolism signaling 0.675472 2.187865 0 0
RNA degradation 0.762306 2.154974 0 0
selenoamino acid metabolism 0.687936 2.123658 0 3.65E-04
purine metabolism signaling 0.582457 2.065042 0 0.001706
cell cycle signaling 0.717232 2.012248 0 0.007123
ES: enrichment score; NES: normalized enrichment score.
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Fig. 10. The analysis of immune infiltrating cells and immune-related functions in high- and low-risk groups. (A) ssGSEA algorithm for the calculation of infiltration
levels of 16 immune cells in two groups. (B) Analysis of immune-related function scores in two groups. (C) A violin plot of immune-infiltrating lymphocytes in two groups. (D)
Bar chart showing the percentage of 22 types of TICs in HCC tumor samples. Column names of the graph were sample ID. *p < 0.05; **p <0.01; ***p < 0.001; ns, non-significant.

experiments are to be completed to validate the workings of the
anoikis-related genes.

Much evidence from research studies showed that long-
noncoding RNAs were pivotal in hepatocellular carcinoma [44].
Furthermore, many investigations have shown that IncRNAs are
instrumental with anoikis [45,46,47]. IncRNA of APOC1P1-3 specif-
ically can bind to miRNA-188-3p and has been indicated to
strengthen anoikis resistance within cells of breast cancer. This
binding acts as a competitive inhibitor, effectively blocking the
Bcl-2 inhibition [47]. A large-sized and rarely spliced IncRNAs
named metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), which are implicated within several gynecological can-
cers. MALAT1 overexpression has been found in ovarian, breast,
cervical and endometrial cancers. This has been linked to the initi-
ation of cancer progression, through the induction and promotion
of alterations in the expression of multiple antiapoptotic genes
associated with epithelial-to-mesenchymal transition [48,49].
The results demonstrated that 103 RNAs were related to the prog-
nosis of hepatocellular carcinoma patients. In our study, six m6A-
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and anoikis-related long noncoding RNAs (AL117336.3, LINC01138,
7Z83851.1, NRAV, CASC19, AC009283.1) were identified in a predic-
tive signature following LASSO regression analysis. CASC19 is
related to the progression in colorectal cancer, advanced gastric
cancer, non-small cell lung, and hepatocellular carcinoma
[50,51,52,53,54,55]. A poorer prognosis was related to higher
CASC19 expression. Furthermore, experiments indicated that
CASC19 overexpression increased cell invasion, migration and pro-
liferation, which was also confirmed by our work. Cell migration-
inducing hyaluronidase 1 (CEMIP) and epithelial-mesenchymal
transition markers were upregulated by CASC19 overexpression.
MiR-140-5p bound directly to CASC19 and CEMIP. Overexpressed
miR-140-5p reversed the effects of CASC19 on cell proliferation
and tumor migration and inhibited CASC19-induced CEMIP expres-
sion. In non-small cell lung cancer, LncRNA CASC19 regulates
miRNA-130b-3p and enhances proliferation, migration and inva-
sion [50]. With ETS1 expression upregulated, CASC19, a long
non-coding RNA, sequesters microRNA-532 and contributes to
the oncogenic potential of clear cell renal cell carcinoma [56].
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half-maximal inhibitory concentration.

NRAV may induce Wnt/beta-catenin signaling by modulating miR-
199a-3p/CISD2 axis in HCC. The potential role of AC009283.1 in
proliferation and apoptosis in the HER2-enriched subtype of breast
cancer was revealed by IncRNA landscape in breast cancer [56].
LINCO01138 has a high frequency of HCC. The LINCO1138 transcript
is associated with malignant features and poor prognosis in HCC
patients and is regulated by insulin-like growth factor 2 mRNA-
binding proteins 1/3 (IGF2BP1/IGF2BP3). LINCO1138 acts as a
tumor suppressor by physically targeting PRMT5 and enhancing
its protein stability by preventing ubiquitin/proteasome-
mediated degradation in HCC. The discovery of LINCO1138, a
promising prognostic indicator, provides insight into the molecular
pathogenesis of HCC and makes the LINCO1138/PRMT5 axis an
ideal therapeutic target for the treatment of HCC [57]. For GSEA,
a group of high-risk was nourished in several biological pathways
like purine metabolism signaling, pyrimidine metabolism signal-
ing, RNA degradation and selenoamino acid metabolism. Cell cycle
signaling pathway plays critical roles in influencing signal trans-
duction and epigenetics in cancer cells [58]. The catabolism of
pyrimidines and purines induces terminal differentiation towards
the monocytic lineage, which regulates aberrant cell proliferation.
By contrast, in particular solid tumors, the catalytic degradation of
pyrimidines sustains a mesenchymal phenotype, driven by
epithelial-to-mesenchymal transition [59,60]. It has recently been
shown that there are systematic alterations in RNA processing in
the context of cancer. It is widely found that in many cases, muta-
tions in RNA-splicing factor genes, as well as the shortening of 3’
untranslated regions, are present.

Additionally, there is an accumulating body of evidence that
other types of RNAs, like circular RNAs, can also contribute to the
formation of tumors [61]. The role of seleno-amino acids, regarded
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as the organic forms of selenium, in regulating antioxidant
defenses, enzyme activity and tumorigenesis has gained increasing
recognition. Consequently, there is an increasing focus on the
potential of seleno-protein-derived amino acids for a therapeutic
agent in the treatment of cancers. In addition to the role in inhibit-
ing tumor growth, there is accumulating evidence that Se-AA
metabolism can alter the tumor microenvironment and enhance
immunotherapy responses [62]. The GSEA outcomes were corre-
lated with high-risk patients and tumor- and immune-related
pathways. In the high-risk group, the subsequent ssGSEA results
shown that B cells, activated dendritic cells, immature dendritic
cells, CD8" T cells, neutrophils, NK-cells, T helper cells, plasmacy-
toid dendritic cells, tumor-infiltrating lymphocyte, T follicular
helper cells and T regulatory cells differed significantly between
the high- and low-risk groups (Fig. 9A), with lower scores. Scien-
tific studies have demonstrated that CD8" T cells play a pivotal role
in the immune response to liver-based metastasis. T cells, a critical
component of the adaptive immune response, significantly affect
the development of liver-based metastases. To inform future clin-
ical treatment, it is vital to elucidate the distinct roles of the vari-
ous T cell subsets [63]. In anti-tumor immunity, Natural killer (NK)
and dendritic cells (DCs) are innate immune cells, which play an
essential role. Natural killer cells can kill tumor cells via two dis-
tinct mechanisms: cytokine secretion and direct cytotoxicity. Den-
dritic cells can be crucial in initiating adaptive immune responses
against tumor cells. The natural killer cells and dendritic cells are
subdivided into some subsets, each endowed with a distinct set
of specialized effector functions. DCs and NK cells’ crosstalk
resulted in activation reciprocal control, as well as immune
responses’ polarization. That is the result of continued exposure
to non-self-circulating antigens, which give rise to immunological
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Fig. 12. The relative expression of 6 IncRNAs in different cell lines. (A-F) The relative expression of AC009283.1, AL117336.3, CASC19, LINC01138, NRAV and Z83851.1

(****p < 0.0001,) **p < 0.001, *p < 0.05).

features [64]. Myelopoiesis and Neutrophils can play a dual role in
cancer [65]. T cells have been recognized as a vital element in
leveraging the immune system’s capacity to eradicate cancer cells
[66]. Arise in cells of tumor-infiltrating immune and a group of the
high-risk was related with a reduction in antitumor immunity, as
evidenced by lower scores for several immune function scores,
including those for T cell co-stimulation, checkpoint,
inflammation-promoting, chemokine receptor (CCR) and Type-II-
IFN-Response, as well as human leukocyte antigen (HLA). The
diminished antitumor immunity observed group of high risk may
be the underlying source for unfavorable prognosis.

The analysis revealed that patients classified as high risk for
HCC are significantly more likely to exhibit a favorable response
to several conventional chemotherapeutic agents. These include
all-trans retinoic acid (ATRA), AUY922 (an HSP90 inhibitor), bexar-
otene (a retinoid X receptor agonist), mitomycin-C, gemcitabine,
and PHA-665752 (a selective MET inhibitor). The heightened sensi-
tivity of high-risk patients to these drugs suggests a therapeutic
vulnerability that can be exploited for treatment. These findings
underscore the potential of integrating molecular risk stratification
into clinical decision-making, enabling the selection of chemother-
apeutic agents that are more likely to be effective for specific
patient subgroups. Consequently, this establishes a strong ratio-
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nale for adopting a precision medicine approach in the manage-
ment of HCC, where high-risk individuals could receive tailored
chemotherapy regimens to improve clinical outcomes. Neverthe-
less, it should be noted that the research has limitations. Firstly,
the TCGA database was employed exclusively for internal valida-
tion; thus, further external validation is required to ascertain the
predicting signature’s applicability in the broader context. TCGA
samples also contained ethnic bias, and due to the retrospective
design, the causality could not be inferred. In the future, an exter-
nal validation cohort such as GSE14520 or ICGC-LIRI-JP should be
used for model validation. Secondly, in hepatocellular carcinoma,
the action’ mechanism of the anoikis-related IncRNAs remains to
be elucidated via further experimental verification. Future studies
can also be done by looking at different methods to inhibit the pro-
gression of cancer, for example, the activation of PPARy could pos-
sibly be an approach to induce differentiation in cells, thereby
inhibiting proliferation of liver hepatocellular carcinoma, espe-
cially by inducing anoikis-mediated apoptosis [67].

5. Conclusions

To sum up, the m6A- and anoikis-related IncRNA signature is an
independently validated predictor of prognosis for hepatocellular
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carcinoma patients and provides a foundation for identifying the
potential mechanisms with anoikis- and m6A-related IncRNAs in
hepatocellular carcinoma and their response to clinical care. Med-
icine bexarotene can inhibit liver cancer cells’ growth by downreg-
ulating the related IncRNAs of CASC19, LINC01138, NRAV and
783851.1.
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