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ABSTRACT

Background: Biliary colic (BC), characterized by intermittent pain due to gallstone-related bile duct
obstruction, remains poorly understood at the molecular level. Circulating exosomal microRNAs
(miRNAs) have emerged as potential biomarkers for various diseases. This study aimed to identify exo-
somal miRNA profiles in BC patients and explore their therapeutic implications.

Results: Analysis of plasma exosomal miRNAs from 10 BC patients during acute attacks and 10
healthy controls (HCs) revealed distinct expression patterns separating BC from HC groups.
Integration of differential expression analysis, WGCNA, and LASSO regression identified 7 key
miRNAs (hsa-miR-142-3p, hsa-miR-32-5p, hsa-miR-374a-3p, hsa-miR-155-5p, hsa-miR-425-3p, hsa-
miR-584-5p, hsa-miR-185-5p) strongly associated with BC. Support vector machine models using
these miRNAs achieved excellent diagnostic performance (AUC = 1.0, where AUC represents Area
Under the Curve). miRNA-targeting drugs including Remlarsen and Cobomarsen showed potential
for therapeutic intervention.

Conclusions: This study identified specific exosomal miRNA signatures that distinguish BC patients
from HC and revealed potential miRNA-targeting therapeutics. These findings advance our
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understanding of BC pathophysiology and provide direction for developing novel diagnostics and

treatments.
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1. Introduction

Biliary colic (BC) is a condition primarily marked by frequent
bouts of excruciating stomach discomfort brought on by bile duct
blockage, usually by gallstones [1]. Despite its prevalence, particu-
larly in populations with a high incidence of cholelithiasis, the
molecular mechanisms underpinning BC remain inadequately
understood [2,3]. This lack of clarity is further compounded by
the absence of robust biomarkers to reliably diagnose and predict
disease progression [4,5]. Current diagnostic approaches, primarily
based on imaging and clinical presentation, often fail to provide
early and definitive detection or insight into the underlying patho-
physiological processes of the disease [6]. Consequently, there is a
compelling need to identify new biomarkers that might help with
earlier diagnosis, prognostication, and even the development of
targeted therapies for BC.

Over the past decade, the study of exosomes -small extracellu-
lar vesicles released into the bloodstream- has garnered consider-
able attention in the field of molecular diagnostics [7,8]. Exosomes
are known to encapsulate a wide variety of biomolecules, such as
lipids, proteins, and, importantly, RNA species such as microRNAs
(miRNAs) [9,10]. These small, non-coding RNAs are essential for
controlling post-transcriptional gene expression and have been
linked to numerous physiological and pathological processes
[11]. Exosomal miRNAs, in particular, have shown themselves to
be viable options for disease biomarkers because of their stability
in body fluids, ease of detection, and potential for providing insight
into disease states [12]. Recent studies have proved that circulating
exosomal miRNAs are useful indicators for a wide range of dis-
eases, including cancers, cardiovascular disorders, and neurological
conditions [13,14].

In the context of BC, however, the role of circulating exosomal
miRNAs remains underexplored. A handful of studies have exam-
ined the miRNA profiles associated with gallbladder diseases, but
few have focused specifically on BC, and even fewer have leveraged
the possibility of exosomal miRNAs as both diagnostic indicators as
well as therapeutic targets [15]. A notable study by Yang et al. [16]
identified miRNA signatures associated with gallbladder carci-
noma, but such findings have not been directly translated into BC
or its acute episodes. Likewise, research on the miRNA signatures
of other biliary diseases, such as cholestasis or bile duct obstruc-
tion, has highlighted their promise but has not yet provided defini-
tive markers for BC diagnosis or therapeutic intervention [17,18].

The current study builds on this foundation by investigating the
exosomal miRNA profiles in patients with BC, specifically during
acute attacks, to identify miRNAs that might be used as therapeutic
targets and biomarkers. By analyzing plasma samples from BC
patients during acute episodes and healthy controls (HC), this
study employs advanced bioinformatics techniques, including
Least Absolute Shrinkage and Selection Operator (LASSO) regres-
sion, WGCNA (Weighted Gene Co-expression Network Analysis),
and differential expression analysis, to pinpoint key miRNAs asso-
ciated with BC. Additionally, predictive models, including support
vector machines (SVM), random forests (RF), and logistic regres-
sion (LR), are used to assess the diagnosis accuracy of the identified

miRNA signatures. The study also explores the therapeutic poten-
tial of miRNA-targeting drugs, an area of increasing interest given
the growing field of miRNA-based therapies.

Through this comprehensive approach, this study seeks to fill
critical gaps in our understanding of BC by identifying specific exo-
somal miRNA signatures that distinguish BC from healthy individ-
uals. Furthermore, the identification of miRNA-targeting
therapeutics holds the promise of providing novel therapeutic
options for BC, an area that remains largely underserved. The find-
ings presented here not only just help with the molecular under-
standing of BC but also clear the path for the future studies
aimed at improving diagnostic precision and treatment efficacy
in patients suffering from this often-debilitating condition.

2. Methods
2.1. Study design and sample collection

The purpose of this study was to find circulatory exosomal
microRNA (miRNA) profiles linked to BC and explore their potential
as therapeutic targets and indicators. miRNA expression profiling
was conducted using publicly available miRNA expression datasets
GSE205374 and GSE228881, which included miRNA data from 10
BC and 10 HC samples. The raw data were extracted from Gene
Expression Omnibus or GEO, and database was obtained for both
datasets.

The demographic and clinical characteristics of the study sub-
jects are summarized in Table 1. While the available datasets had
limited demographic information, we acknowledge this as a limita-
tion. In future studies, we plan to systematically collect and ana-
lyze demographic information (age, sex, BMI) and comorbidity
data to control for potential confounding factors.

2.2. Data preprocessing

For datasets GSE205374 and GSE228881, we first removed
genes (rows) and samples (columns) with more than 50 % missing
values. Missing values were then k-nearest neighbors (KNN) algo-
rithm, which is used in the R package impute with the number of
neighbors set to 10. To normalize the data, we applied a log2 trans-

Table 1
Demographic and clinical characteristics of study subjects.
Characteristic BC Patients Healthy p-value
(n=10) Controls
(n=10)
Age (years) * * *
Sex (male/female) * * *
BMI (kg/m?) * * *
Comorbidities (n, %) * * *
Pain score (VAS) * NA NA
Duration of symptoms (h) * NA NA

Note: The table includes placeholder asterisks (*) as the original datasets had lim-
ited demographic information available. This table structure is proposed for future
studies where complete demographic data would be collected.


https://doi.org/10.1016/j.ejbt.2025.05.007
https://doi.org/10.1016/j.ejbt.2025.05.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

X. Han, A. Wu and M. Bao

formation to all expression values. Moreover, the intersection of
miRNAs between the two datasets was illustrated via the UpSet
plot using UpSetR package. Only miRNAs detected in both datasets
were retained for further analysis, resulting in a final dataset of 221
miRNAs.

For merging the two datasets, we employed the inSilicoMerging
package [19] in R to integrate GSE205374 and GSE228881. To
address batch effects, we used the Empirical Bayes
method [20], which adjusts for systematic biases between the
datasets.

To visualize the effectiveness of batch effect correction, we per-
formed a Principal Component Analysis (PCA) both before and after
applying the Empirical Bayes method. The pre-correction PCA
showed clear clustering by dataset rather than by biological condi-
tion, while post-correction PCA demonstrated improved separation
between BC and HC groups, confirming successful mitigation of
technical variability between datasets.

2.3. Principal Component Analysis (PCA)

To visualize clustering of samples, PCA was carried out on the
merged miRNA expression data from both datasets. PCA was com-
pleted utilizing the prcomp () function in R, and the first two prin-
cipal components (PC1 and PC2) were plotted to assess the
separation between BC and HC samples.

2.4. Differential miRNA expression analysis

The differentially expressed miRNAs (DEMs) between BC and
HC groups were identified using the limma package in R [21],
applying an adjusted p-value of less than 0.05, and a criterion of
|Logy(fold change)| > 1 is required. The DEMs were visualized by
a volcano plot.

2.5. WGCNA (Weighted Gene Co-Expression Network Analysis)

To explore the connections among miRNAs and clinical traits,
WGCNA was carried out utilizing the WGCNA package in R [22].
A soft threshold power (B) was chosen to guarantee a network
devoid of scale, and miRNA expression profiles were used to
construct a network of co-expression. Hierarchical clustering
was accustomed to identify miRNA modules that exhibit
comparable expression profiles. A dynamic tree cutting method
was applied to detect these modules. For additional considera-
tion, the module having the strongest association to BC was
chosen.

2.6. Identification of key miRNAs using Least Absolute Shrinkage and
Selection Operator (LASSO) regression

To identify key miRNAs for BC, an integrated approach combin-
ing differential expression analysis, WGCNA, and LASSO regression
was employed. A Venn diagram was created to show the overlap
between DEMs and miRNAs in the turquoise module. These over-
lapped miRNAs were further evaluated using LASSO regression,
and it was carried out using R’s glmnet package. This method
was employed to reduce the dimensionality of the miRNA dataset
by penalizing less important features and selecting a subset of
miRNAs that best differentiate between BC and HC. The optimal
lambda value was selected using the one-standard-error rule and
3-fold cross-validation. The top 7 miRNAs identified by LASSO
regression, including hsa-miR-142-3p, hsa-miR-32-5p, hsa-miR-
374a-3p, hsa-miR-155-5p, hsa-miR-425-3p, hsa-miR-584-5p, and
hsa-miR-185-5p, were further analyzed for their potential
diagnostic value.
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2.7. Expression profiles and clinical significance of key miRNAs

The seven major miRNAs’ expression levels were examined by
hierarchical clustering using ComplexHeatmap [2.13.1] [23]. The
examination of univariate logistic regression was conducted to
determine the clinical significance of the 7 key miRNAs. A forest
plot was generated to summarize for every miRNA, including odds
ratios (ORs) and 95% confidence intervals (CIs).

2.8. Predictive modeling and evaluation

To evaluate the diagnostic potential of the identified miRNAs,
predictive models were constructed using Random Forest (RF),
Logistic Regression (LR), and Support Vector Machines (SVMs).
These models were trained using the expression levels of the 7
key miRNAs identified by LASSO. The models’ predictive power
was assessed using metrics such as Receiver Operating Character-
istic (ROC) curves, calibration curves, brier scores, and Decision
Curve Analyses (DCAs).

To address potential overfitting concerns, particularly with the
SVM model that achieved an AUC of 1.0, we implemented 5-fold
cross-validation for more robust model evaluation. This approach
provides a more realistic assessment of model performance by
testing on data not used in training, thus mitigating overfitting
risks associated with our relatively small sample size.

2.9. Identification of miRNA-targeting drugs

To explore the therapeutic implications of the identified miR-
NAs, potential miRNA-targeting drugs were investigated. The Drug
Gene Interaction Database (DGIdb) was queried to identify
approved and investigational drugs targeting the key miRNAs iden-
tified in this study [24].

2.10. Functional enrichment analysis of miRNA targets

To understand the biological pathways potentially regulated by
the identified key miRNAs, we performed functional enrichment
analysis. The predicted target genes of the 7 key miRNAs were
identified using miRTarBase and TargetScan databases. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were conducted using the clusterProfiler
R package to identify significantly enriched biological processes,
molecular functions, cellular components, and signaling pathways.
Enrichment was considered significant at an adjusted p-
value < 0.05. The results of these analyses are summarized in
Table 2.

2.11. Statistical analysis

For all statistical studies, R software (version 4.3.2) was used.
For all analyses, the significance threshold was established at
p < 0.05, and multiple comparison corrections were done where
applicable using the Benjamini-Hochberg method.

3. Results

3.1. Dataset integration and differential expression analysis of
circulating exosomal miRNAs

The integration of two independent datasets, GSE205374 and
GSE228881, identified a total of 1201 miRNAs in plasma samples
derived from 10 patients with BC attacks and 10 HC. Of these,
759 miRNAs were identified in GSE205374, and 442 miRNAs were
identified in GSE228881. An UpSet plot of the two datasets
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Table 2
Summary of GO and KEGG pathway enrichment analysis of key miRNA targets.
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Category Term Description Count p-value Adjusted p-value
GO:BP GO0:0006954 Inflammatory response 32 2.5E-4 0.003
GO:BP G0:0042127 Regulation of cell proliferation 47 5.8E-4 0.008
GO:BP G0:0048265 Response to pain 18 9.1E-4 0.012
GO:BP G0:0006939 Smooth muscle contraction 15 1.8E-3 0.021
GO:MF G0:0005125 Cytokine activity 28 3.1E-4 0.004
GO:CC G0:0005887 Integral component of plasma membrane 56 2.7E-3 0.023
KEGG hsa04064 NF-kappa B signaling pathway 22 5.2E-4 0.007
KEGG hsa04010 MAPK signaling pathway 35 8.4E-4 0.011
KEGG hsa04668 TNF signaling pathway 18 1.2E-3 0.015
KEGG hsa04921 Oxytocin signaling pathway 23 2.5E-3 0.026

*GO:BP = Gene Ontology Biological Process; GO:MF = Gene Ontology Molecular Function; GO:CC = Gene Ontology Cellular Component; KEGG = Kyoto Encyclopedia of Genes

and Genomes.

revealed that 221 miRNAs were shared between them (Fig. 1A).
Analysis of principal components (PCAs) of the combined datasets
revealed a clear division between BC patients (red) and healthy
controls (blue), although the second principal component (PC2)
explains 48.2% of the variation, and the first principal component
(PC1) 7.8% of the total variance (Fig. 1B). Differential expression
analysis revealed 144 upregulated and 4 downregulated miRNAs
in BC compared to HC, based on a |Log, (fold change)| > 1 and
adjusted p-value < 0.05. These differentially expressed miRNAs
(DEMs) are depicted in a volcano plot, where red indicates miRNAs
that are considerably elevated, blue indicates miRNAs that are
downregulated, and gray indicates miRNAs that are not significant
(Fig. 1C). The effectiveness of batch effect correction was confirmed
by PCA analysis (Fig. 1D).

3.2. Weighted Gene Co-Expression Network Analysis (WGCNA) of
circulating exosomal miRNAs

To explore the co-expression patterns of miRNAs, an analysis of
the WGCNA was conducted on the circulating exosomal miRNA
profiles. The power of soft-thresholding for network construction
was established using a scale-free topology fit index (R?), with a
cutoff of R? = 0.85, corresponding to a power of 9 (Fig. 2A). This
power value ensured an optimal network construction while main-
taining reliable connectivity. The hierarchical clustering dendro-
gram of miRNAs revealed distinct co-expression modules, with
the turquoise module showing strong associations with BC
patients, as indicated by dynamic module detection (Fig. 2B). The
turquoise module was discovered to be strongly negatively con-
nected with HC (r = -0.987, p = 8.3e-16) and strongly favorably
connected with BC (r = 0.987, p = 8.3e-16), suggesting its critical
role in BC pathogenesis (Fig. 2C).

3.3. Identification of key miRNAs through integration of differential
expression analysis, WGCNA, and LASSO regression

To identify key miRNAs associated with BC, we integrated
the results of differential expression analysis, WGCNA, and

LASSO regression. The Venn diagram in Fig. 3A shows the over-
lap between the DEMs and the miRNAs within the turquoise
module identified in WGCNA, revealing a total of 148 miRNAs
that intersect. To further refine the selection of key miRNAs, a
LASSO regression model was applied. Using the one-standard-
error rule, 7 key miRNAs were identified: hsa-miR-142-3p,
hsa-miR-32-5p, hsa-miR-374a-3p, hsa-miR-155-5p, hsa-miR-
425-3p, hsa-miR-584-5p, and hsa-miR-185-5p (Fig. 3B). The
coefficient profiles of these miRNAs were plotted, demonstrating
that these 7 miRNAs remained non-zero at the optimal lambda
value, further validating their potential relevance in BC
(Fig. 3C).

3.4. Expression profiles and clinical significance of key miRNAs in BC

To evaluate the patterns of expression of the 7 key miRNAs in
BC, hierarchical clustering analysis was performed. The degrees
of manifestation of these miRNAs were noticeably greater in BC
patients as opposed to HC, as evidenced by the heatmap showing
distinct clustering patterns for BC (red) and HC (blue) groups
(Fig. 4A). Logistic regression analysis of the 7 key miRNAs revealed
that all were significantly associated with BC, with hsa-miR-185-
5p showing the highest odds ratio (OR = 8.79, 95 % Cl: 1.43-
54.04), suggesting its strong potential as a biomarker for BC
(Fig. 4B).

The biological functions of these key miRNAs may contribute
significantly to BC pathophysiology. hsa-miR-155-5p is known to
modulate inflammatory pathways through regulation of NF-kB sig-
naling, potentially influencing the inflammatory response during
biliary obstruction. hsa-miR-142-3p has been implicated in
immune cell function and inflammatory modulation, while hsa-
miR-185-5p has been associated with cell proliferation and pain
signaling pathways. Additionally, hsa-miR-32-5p may regulate
smooth muscle contractility, potentially relevant to the spasmodic
pain characteristic of BC. These functional roles highlight the com-
plex molecular mechanisms potentially underlying BC pathogene-

sis (Fig. 4C).
>

Fig. 1. Dataset integration, principal component analysis (PCA), and differential expression analysis of circulating exosomal miRNAs extracted from plasma samples
of 10 patients with biliary colic (BC) attack and 10 healthy controls (HCs). (A) The left-hand bar plot displays the overall quantity of miRNAs identified in each dataset:
GSE205374 (759 miRNAs, blue) and GSE228881 (442 miRNAs, red). The UpSet plot on the right depicts the intersection of miRNAs between the two datasets, highlighting 221
shared miRNAs. (B) Principal Component Analysis (PCA) of miRNA expression profiles from merged datasets. PCA was performed to assess the clustering of samples into HC
(blue) and patients with BC (red). The first principal component (PC1) accounts for 48.2% as well as the second main component (PC2) of the variance explains 7.8%,
demonstrating a clear division between HC and BC groups. (C) Volcano plot of differentially expressed miRNAs (DEMs) in BC versus HC. Differential expression analysis
identified 144 significantly upregulated (red) and 4 downregulated (blue) miRNAs, based on |Log; (fold change)| > 1 and adjusted p-value < 0.05 thresholds. Non-significant
miRNAs are shown in gray. (D) PCA plots before and after batch effect correction. Left panel shows the PCA plot before applying the Empirical Bayes method for batch
correction, with samples clustering by dataset origin rather than biological condition. Right panel shows the PCA plot after batch effect correction, demonstrating improved
separation based on biological condition (BC vs HC) rather than technical batch effects. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 2. WGCNA (Weighted Gene Co-Expression Network Analysis) of circulating exosomal miRNAs. (A) Selection of soft-thresholding power for network construction. A
function of soft-thresholding power is displayed in the top panel along with the scale-free topology fit index (R?). A cutoff of R? = 0.85 was selected, and the corresponding
power of 9 was chosen (indicated by the red dashed line). The bottom panel illustrates the mean connectivity of the miRNA network across varying soft-thresholding powers,
showing a decline as the power increases. (B) Hierarchical clustering dendrogram and dynamic module detection. The dendrogram groups miRNAs based on their topological
overlap, with modules identified by dynamic tree cutting. The module colors represent distinct miRNA co-expression clusters, with key modules shown in turquoise. Sample
traits for HC and BC groups are displayed below, highlighting distinct module associations with each group. (C) Heatmap showing the correlation of key modules
(MEturquoise and MEgrey) with HC and BC groups. The turquoise module exhibits a strong negative correlation with HC (r = —0.987, p = 8.3e-16) and a strong positive
correlation with BC (r = 0.987, p = 8.3e-16). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.5. Evaluation of predictive models for distinguishing healthy controls
BC patients

The predictive capacity of the 7 key miRNAs in differentiating
between HC and BC patients was evaluated using three machine
learning models: Random forest (RF), logistic regression (LR), and
support vector machines (SVMs). The curves for receiver operating
characteristics (ROCs) demonstrated that both the RF and SVM
models achieved perfect discrimination between BC and HC, hav-
ing an Area Under the Curve (AUC) of 1.0. In contrast, the LR model
exhibited a lower AUC of 0.875 (Fig. 5A). Further evaluation using
calibration plots revealed that the SVM model with optimal cali-
bration was the lowest brier score (0.037), followed by RF (Brier
score = 0.062) and LR (Brier score = 0.332) (Fig. 5B). Decision curve
analysis (DCA) indicated that the SVM and RF models provided the
highest net benefit at most threshold probabilities, making them
more clinically valuable for predicting BC compared to the LR
model and clinical extremes (Fig. 5C).

The 5-fold cross-validation results supported the high
performance of our models, though with slightly reduced metrics
compared to the initial evaluation, suggesting some degree of

overfitting in the original models. The cross-validated AUCs were
0.95 for SVM, 0.92 for RF, and 0.85 for LR, providing a more realistic
estimate of how these models might perform on independent data.
These findings underscore the potential of our miRNA signatures as
diagnostic biomarkers while acknowledging the need for valida-
tion in larger, independent cohorts (Fig. 5D, Table 3).

3.6. Functional enrichment analysis of predicted miRNA targets

GO and KEGG pathway analyses of the predicted target genes of
our 7 key miRNAs revealed significant enrichment in several bio-
logical processes and signaling pathways relevant to BC patho-
physiology. Enriched GO terms included inflammatory response
(G0O:0006954, adjusted p = 0.003), regulation of cell proliferation
(GO:0042127, adjusted p = 0.008), response to pain
(G0O:0048265, adjusted p = 0.012), and smooth muscle contraction
(G0:0006939, adjusted p = 0.021). KEGG pathway analysis identi-
fied enrichment in NF-kB signaling (hsa04064, adjusted p = 0.007),
MAPK signaling (hsa04010, adjusted p = 0.011), and TNF signaling
(hsa04668, adjusted p = 0.015) pathways. These findings provide
insight into the potential molecular mechanisms through which
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Fig. 3. Identification of key miRNAs through integration of differential expression analysis, WGCNA, and LASSO regression. (A) The Venn diagram illustrates the
intersection between DEMs (blue) and miRNAs within the turquoise module (red) from WGCNA. A total of 148 miRNAs were found to overlap. (B) LASSO regression model for
selection of key miRNAs. Binomial deviance is plotted as a function of log-transformed lambda values (log()). The red dots show the standard deviation, while the error bars
show the mean deviation. The optimal lambda value was selected using the one-standard-error rule (right dashed line), resulting in the identification of 7 key miRNAs,
including hsa-miR-142-3p, hsa-miR-32-5p, hsa-miR-374a-3p, hsa-miR-155-5p, hsa-miR-425-3p, hsa-miR-584-5p, hsa-miR-185-5p. (C) LASSO coefficient profiles of
candidate miRNAs. The coefficient trajectories of miRNAs are shown as a function of log-transformed lambda values. As the penalty term increases, most coefficients shrink
toward zero, leaving 7 non-zero coefficients at the optimal lambda. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

these miRNAs may contribute to BC development and symptoma-
tology (Fig. 6, Table 2).

3.7. miRNA-drug interaction network highlighting potential
therapeutic targets for BC

A miRNA-drug interaction network was constructed to explore
potential therapeutic interventions for BC. The network high-
lighted the relationship between the 7 key miRNAs and existing
miRNA-targeting drugs. Among the key miRNAs, hsa-miR-155-5p
was found to be targeted by two therapeutic candidates, Rem-
larsen and Cobomarsen, emphasizing the possibility of using hsa-
miR-155-5p as a target for treatment of BC (Fig. 7). However, the
other key miRNAs (hsa-miR-185-5p, hsa-miR-584-5p, hsa-miR-
32-5p, hsa-miR-142-3p, hsa-miR-425-3p, and hsa-miR-374a-3p)
were not linked to any known miRNA-targeting drugs in the DGIdb
database, indicating a need for further investigation into potential
therapeutic options targeting these miRNAs.

Notably, Cobomarsen (MRG-106) is an LNA-modified antisense
oligonucleotide that specifically inhibits miR-155 activity and has
entered clinical trials for certain lymphomas. It demonstrates

potent anti-inflammatory effects that could potentially benefit BC
patients by modulating inflammatory pathways. Similarly, Rem-
larsen (MRG-201) is designed to mimic miR-29b and has shown
promising results in Phase 2 clinical trials for fibrotic conditions.
While these drugs have not been specifically tested for BC, their
mechanisms of action targeting inflammatory and fibrotic pro-
cesses suggest potential therapeutic applications in managing BC
symptoms and progression.

3.8. Comparison of miRNA signatures across biliary tract diseases

To assess the specificity of our identified miRNA signatures for
BC, we compared our findings with published miRNA profiles from
related biliary conditions. The miRNA signatures we identified in
BC show partial overlap with those reported in cholecystitis and
gallbladder cancer, particularly regarding hsa-miR-155-5p, which
appears to be a common inflammatory mediator across biliary con-
ditions. However, several of our key miRNAs, including hsa-miR-
185-5p and hsa-miR-584-5p, appear more specific to BC. In partic-
ular, Yang et al.’s study on gallbladder carcinoma [16] identified
different key miRNAs than our BC signature, suggesting disease-
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Fig. 4. Expression profiles and clinical significance of key miRNAs identified in BC. (A) The expression levels of the 7 key miRNAs identified through LASSO regression were
subjected to hierarchical clustering. Expression levels are normalized and presented as a blue gradient (low expression) to red (high expression). Distinct clustering patterns
are observed, with BC patients (red group label) characterized by consistently higher expression levels of these miRNAs compared to HC subjects (blue group label). (B) A
forest plot summarizes the odds ratios (OR) and 95% confidence intervals (CI) for each key miRNA from logistic regression analysis. All 7 miRNAs are significantly associated
with BC. Notably, hsa-miR-185-5p exhibits the highest OR (8.79, 95% CI: 1.43-54.04), suggesting its strong potential as a biomarker for BC. (C) Biological functions of key
miRNAs in BC. Schematic diagram illustrating the known biological functions of the 7 key miRNAs and their potential roles in BC pathophysiology. The diagram shows hsa-
miR-155-5p regulating inflammatory response through NF-kB signaling, hsa-miR-142-3p involved in immune modulation, hsa-miR-185-5p associated with pain signaling
pathways, and hsa-miR-32-5p potentially regulating smooth muscle contractility relevant to BC symptoms. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

specific alterations despite the anatomical proximity. This compar-
ative analysis highlights the potential of our miRNA panel to
specifically distinguish BC from other biliary diseases, though fur-
ther direct comparative studies are needed to confirm this speci-
ficity (Fig. 8, Table 4).

4. Discussion

This study explores the potential of circulating exosomal
miRNA signatures as biomarkers and therapeutic targets in BC, a

condition characterized by episodic severe pain due to gallstone-
induced obstruction of the biliary tract. By integrating two inde-
pendent datasets (GSE205374 and GSE228881), we identified a
comprehensive miRNA signature that differentiates BC patients
from HC, uncovering novel perceptions of the molecular processes
that underlie BC and its capacity to clinical application.

The integration of two independent datasets revealed a sub-
stantial number of circulating exosomal miRNAs, with 221 miRNAs
shared between the two datasets. PCA demonstrated a clear sepa-
ration between BC patients and HC, highlighting the possibility of
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but still strong performance metrics compared to the original models, thus providing a more realistic assessment of model performance on unseen data.

exosomal miRNAs as diagnostic indicators for BC. The differential earlier research that has demonstrated the utility of exosomal
expression analysis identified 148 DEMs, with 144 miRNAs being miRNAs; these findings align with previous studies that have
upregulated in BC patients. These results are consistent with explained inflammatory conditions [25,26]. The upregulation of
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Table 3
Summary of machine learning model performance.
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Model Accuracy Sensitivity Specificity PPV NPV Original AUC 5-fold CV AUC Brier Score
SVM 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.037
RF 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.062
LR 0.85 0.80 0.90 0.89 0.82 0.875 0.85 0.332

SVM = Support Vector Machine; RF = Random Forest; LR = Logistic Regression; PPV = Positive Predictive Value; NPV = Negative Predictive Value; AUC = Area Under the Curve;

CV = Cross-Validation.
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KEGG pathway enrichment analysis showing significantly enriched signaling pathways including NF-«B signaling, MAPK signaling, and TNF signaling pathways. (C) Network
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miRNAs in BC patients may reflect the inflammatory and patholog-
ical processes associated with biliary colic, potentially offering a
minimally invasive diagnostic tool. The identification of DEMs is
consistent with previous studies that report altered miRNA profiles
in bile, plasma, and serum in gallbladder diseases, including biliary
colic and cholangiocarcinoma [27,28)]. However, our study’s origi-

10

nality is found in the use of exosomal miRNAs, which are known
to be more stable in circulation compared to free-floating miRNAs.
This stability is crucial for developing reliable biomarkers capable
of being detected in routine clinical environments.

The WGCNA of the exosomal miRNA profiles further deepened
our understanding of the regulatory mechanisms in BC. The
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compared with published signatures from cholecystitis, gallbladder carcinoma, and
cholangiocarcinoma, highlighting BC-specific miRNAs and shared inflammatory
mediators.

turquoise module, which showed a strong positive correlation with
BC patients and a negative correlation with HC, emerged as a key
module associated with BC pathogenesis. This suggests that the
miRNAs within this module play critical roles in the molecular
alterations observed in BC. Previous research has also emphasized
the importance of co-expression networks in understanding com-
plex diseases, as they provide insights into the interactions
between genes and miRNAs that drive disease processes [29,30].
The strong association of the turquoise module with BC underlines
the potential of miRNA modules in identifying disease-specific sig-
natures and therapeutic targets.

Through the integration of differential expression analysis,
WGCNA, and LASSO regression, we identified 7 key miRNAs (hsa-
miR-142-3p, hsa-miR-32-5p, hsa-miR-374a-3p, hsa-miR-155-5p,
hsa-miR-425-3p, hsa-miR-584-5p, and hsa-miR-185-5p) that are
strongly associated with BC. These miRNAs are highly expressed
in BC patients, and their expression patterns can serve as reliable
biomarkers for disease diagnosis. Among these, hsa-miR-185-5p
was found to have the highest odds ratio, suggesting its potential
as a key diagnostic marker. Previous studies have reported the
involvement of several of these miRNAs in other malignancies,
such as hsa-miR-155-5p, which has been implicated in inflamma-
tory and immune-related processes [31,32]. The strength of our

Table 4

Comparison of key miRNA expression in different biliary diseases.
miRNA BC (Our Study) Cholecystitis Gallbladder Carcinoma Cholangiocarcinoma Reference
hsa-miR-155-5p Upregulated Upregulated Upregulated Upregulated [16,27,28]
hsa-miR-185-5p Upregulated Not reported Not reported Not reported -
hsa-miR-142-3p Upregulated Upregulated Not reported Upregulated [27]
hsa-miR-32-5p Upregulated Not reported Not reported Not reported -
hsa-miR-374a-3p Upregulated Not reported Not reported Not reported -
hsa-miR-425-3p Upregulated Not reported Not reported Not reported -
hsa-miR-584-5p Upregulated Not reported Downregulated Not reported [16]

*This comparative analysis demonstrates that while some miRNAs like hsa-miR-155-5p are commonly dysregulated across biliary diseases, others like hsa-miR-185-5p and
hsa-miR-584-5p appear more specific to BC, suggesting potential disease-specific biomarkers.
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research’s correlation between hsa-miR-155-5p and BC suggests
that it may be used as a therapeutic target as well as a biomarker.

Our functional enrichment analysis revealed that targets of the
identified key miRNAs are significantly involved in inflammatory
response, pain signaling, and smooth muscle contraction path-
ways, all directly relevant to BC pathophysiology. For instance,
hsa-miR-155-5p regulates NF-xB signaling, a central pathway in
inflammation, while predicted targets of hsa-miR-185-5p are
enriched in pain response pathways. Additionally, hsa-miR-32-5p
targets genes involved in smooth muscle contraction, potentially
contributing to the characteristic colicky pain of BC. These findings
provide mechanistic insights into how these miRNAs may con-
tribute to BC development and symptomatology, beyond their util-
ity as biomarkers (Fig. 7, Table 2).

To further validate the diagnostic utility of these miRNAs, three
machine learning techniques were used as models: LR, RF, and
SVM. The SVM and RF models demonstrated perfect discrimination
between BC and HC with an AUC of 1.0, while the LR model showed
a slightly lower AUC of 0.875. These outcomes highlight how effec-
tive machine learning is in enhancing the predictive accuracy of
biomarkers. The excellent performance of the SVM and RF models
is particularly promising, as they offer potential for clinical applica-
tions, where accurate, early diagnosis of BC could lead to better
patient outcomes. Previous studies have shown how well machine
learning models anticipate a variety of diseases using miRNA sig-
natures, reinforcing the value of combining advanced computa-
tional techniques with molecular biomarkers [33,34].

While our models showed excellent performance metrics, we
acknowledge the potential for overfitting given our relatively small
sample size. Our 5-fold cross-validation analysis resulted in
slightly reduced but still strong performance metrics (cross-
validated AUCs of 0.95 for SVM, 0.92 for RF, and 0.85 for LR), pro-
viding a more realistic assessment of model performance on
unseen data. These findings suggest that while some degree of
overfitting may be present, the identified miRNA signatures retain
strong discriminatory power. Future studies with larger, indepen-
dent cohorts will be crucial to fully validate these models
(Fig. 5D, Table 3).

Beyond their diagnostic potential, the key miRNAs found in this
investigation could also act as targets for therapy for BC. miRNA-
based therapies are emerging as a promising strategy for treating
various diseases, including cancer [35]. The miRNA-drug interac-
tion network revealed that hsa-miR-155-5p is targeted by two
therapeutic candidates, Remlarsen and Cobomarsen. These drugs
have demonstrated potential in clinical trials for several illnesses,
including cancer and autoimmune disorders, suggesting that tar-
geting hsa-miR-155-5p could be an effective therapeutic approach
for BC [36,37]. However, the other key miRNAs in our study (hsa-
miR-185-5p, hsa-miR-584-5p, hsa-miR-32-5p, hsa-miR-142-3p,
hsa-miR-425-3p, and hsa-miR-374a-3p) do not yet have any
known targeted drugs, indicating a need for further research into
potential therapeutic interventions.

One of the study’s main weaknesses is its rather small sample
size, which could limit how far the results can be applied. Further-
more, the lack of broader clinical validation poses a challenge in
confirming the applicability of identified biomarkers in diverse
patient populations. Potential batch effects during sample process-
ing could also introduce variability in miRNA expression profiles.
Despite our efforts to correct for batch effects using the Empirical
Bayes method, some technical variability may persist. Additionally,
the limited demographic information available in the public data-
sets prevented us from controlling for potential confounding fac-
tors such as age, sex, and comorbidities, which could influence
miRNA expression patterns. The perfect discrimination achieved
by our SVM and RF models may reflect some degree of overfitting,
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as suggested by our cross-validation analysis [38,39]. These limita-
tions suggest a need for larger-scale studies that encompass vary-
ing demographics and clinical settings to robustly validate our
findings as recommended in previous biomarker discovery studies
[40,41].

In conclusion, this study highlights the possibilities for diagno-
sis and treatment of circulating exosomal miRNA signatures in BC.
By identifying key miRNAs associated with BC and demonstrating
their predictive power using machine learning models, we provide
a solid foundation in order to create miRNA-based biomarkers for
BC. Furthermore, the identification of therapeutic candidates tar-
geting hsa-miR-155-5p offers new avenues for the treatment of
BC. These findings underscore the need for further investigation
into the clinical utility of exosomal miRNAs in BC and other biliary
tract diseases. Future studies should concentrate on investigating
these miRNAs’ functional roles and validating them in larger
cohorts the pathogenesis of BC to refine their potential for both
diagnosis and therapy using advanced analytical techniques
[42,43].
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