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Background: Biliary colic (BC), characterized by intermittent pain due to gallstone-related bile duct 
obstruction, remains poorly understood at the molecular level. Circulating exosomal microRNAs 
(miRNAs) have emerged as potential biomarkers for various diseases. This study aimed to identify exo-
somal miRNA profiles in BC patients and explore their therapeutic implications. 
Results: Analysis of plasma exosomal miRNAs from 10 BC patients during acute attacks and 10 
healthy controls (HCs) revealed distinct expression patterns separating BC from HC groups. 
Integration of differential expression analysis, WGCNA, and LASSO regression identified 7 key 
miRNAs (hsa-miR-142-3p, hsa-miR-32-5p, hsa-miR-374a-3p, hsa-miR-155-5p, hsa-miR-425-3p, hsa-
miR-584-5p, hsa-miR-185-5p) strongly associated with BC. Support vector machine models using 
these miRNAs achieved excellent diagnostic performance (AUC = 1.0, where AUC represents Area 
Under the Curve). miRNA-targeting drugs including Remlarsen and Cobomarsen showed potential 
for therapeutic intervention. 
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Table 1 
Demographic and clinical characteristics of study subjects. 

Characteristic BC Patients 
(n = 10) 

Healthy 
Controls 
(n = 10) 

p-value 

Age (years) * * * 
Sex (male/female) * * * 

) * * *BMI (kg/m2 

Comorbidities (n, %) * * * 
Pain score (VAS) * NA NA 
Duration of symptoms (h) * NA NA 

Note: The table includes placeholder asterisks (*) as the original datasets had lim-
ited demographic information available. This table structure is proposed for future 
studies where complete demographic data would be collected.
1. Introduction 

Biliary colic (BC) is a condition primarily marked by frequent 
bouts of excruciating stomach discomfort brought on by bile duct 
blockage, usually by gallstones [1]. Despite its prevalence, particu-
larly in populations with a high incidence of cholelithiasis, the 
molecular mechanisms underpinning BC remain inadequately 
understood [2,3]. This lack of clarity is further compounded by 
the absence of robust biomarkers to reliably diagnose and predict 
disease progression [4,5]. Current diagnostic approaches, primarily 
based on imaging and clinical presentation, often fail to provide 
early and definitive detection or insight into the underlying patho-
physiological processes of the disease [6]. Consequently, there is a 
compelling need to identify new biomarkers that might help with 
earlier diagnosis, prognostication, and even the development of 
targeted therapies for BC. 

Over the past decade, the study of exosomes -small extracellu-
lar vesicles released into the bloodstream- has garnered consider-
able attention in the field of molecular diagnostics [7,8]. Exosomes 
are known to encapsulate a wide variety of biomolecules, such as 
lipids, proteins, and, importantly, RNA species such as microRNAs 
(miRNAs) [9,10]. These small, non-coding RNAs are essential for 
controlling post-transcriptional gene expression and have been 
linked to numerous physiological and pathological processes 
[11]. Exosomal miRNAs, in particular, have shown themselves to 
be viable options for disease biomarkers because of their stability 
in body fluids, ease of detection, and potential for providing insight 
into disease states [12]. Recent studies have proved that circulating 
exosomal miRNAs are useful indicators for a wide range of dis-
eases, including cancers, cardiovascular disorders, and neurological 
conditions [13,14]. 

In the context of BC, however, the role of circulating exosomal 
miRNAs remains underexplored. A handful of studies have exam-
ined the miRNA profiles associated with gallbladder diseases, but 
few have focused specifically on BC, and even fewer have leveraged 
the possibility of exosomal miRNAs as both diagnostic indicators as 
well as therapeutic targets [15]. A notable study by Yang et al. [16] 
identified miRNA signatures associated with gallbladder carci-
noma, but such findings have not been directly translated into BC 
or its acute episodes. Likewise, research on the miRNA signatures 
of other biliary diseases, such as cholestasis or bile duct obstruc-
tion, has highlighted their promise but has not yet provided defini-
tive markers for BC diagnosis or therapeutic intervention [17,18]. 

The current study builds on this foundation by investigating the 
exosomal miRNA profiles in patients with BC, specifically during 
acute attacks, to identify miRNAs that might be used as therapeutic 
targets and biomarkers. By analyzing plasma samples from BC 
patients during acute episodes and healthy controls (HC), this 
study employs advanced bioinformatics techniques, including 
Least Absolute Shrinkage and Selection Operator (LASSO) regres-
sion, WGCNA (Weighted Gene Co-expression Network Analysis), 
and differential expression analysis, to pinpoint key miRNAs asso-
ciated with BC. Additionally, predictive models, including support 
vector machines (SVM), random forests (RF), and logistic regres-
sion (LR), are used to assess the diagnosis accuracy of the identified 
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miRNA signatures. The study also explores the therapeutic poten-
tial of miRNA-targeting drugs, an area of increasing interest given 
the growing field of miRNA-based therapies. 

Through this comprehensive approach, this study seeks to fill 
critical gaps in our understanding of BC by identifying specific exo-
somal miRNA signatures that distinguish BC from healthy individ-
uals. Furthermore, the identification of miRNA-targeting 
therapeutics holds the promise of providing novel therapeutic 
options for BC, an area that remains largely underserved. The find-
ings presented here not only just help with the molecular under-
standing of BC but also clear the path for the future studies 
aimed at improving diagnostic precision and treatment efficacy 
in patients suffering from this often-debilitating condition. 

2. Methods 

2.1. Study design and sample collection 

The purpose of this study was to find circulatory exosomal 
microRNA (miRNA) profiles linked to BC and explore their potential 
as therapeutic targets and indicators. miRNA expression profiling 
was conducted using publicly available miRNA expression datasets 
GSE205374 and GSE228881, which included miRNA data from 10 
BC and 10 HC samples. The raw data were extracted from Gene 
Expression Omnibus or GEO, and database was obtained for both 
datasets. 

The demographic and clinical characteristics of the study sub-
jects are summarized in Table 1. While the available datasets had 
limited demographic information, we acknowledge this as a limita-
tion. In future studies, we plan to systematically collect and ana-
lyze demographic information (age, sex, BMI) and comorbidity 
data to control for potential confounding factors. 

2.2. Data preprocessing 

For datasets GSE205374 and GSE228881, we first removed 
genes (rows) and samples (columns) with more than 50 % missing 
values. Missing values were then k-nearest neighbors (KNN) algo-
rithm, which is used in the R package impute with the number of 
neighbors set to 10. To normalize the data, we applied a log2 trans-
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formation to all expression values. Moreover, the intersection of 
miRNAs between the two datasets was illustrated via the UpSet 
plot using UpSetR package. Only miRNAs detected in both datasets 
were retained for further analysis, resulting in a final dataset of 221 
miRNAs.

For merging the two datasets, we employed the inSilicoMerging 
package [19] in R to integrate GSE205374 and GSE228881. To 
address batch effects, we used the Empirical Bayes 
method [20], which adjusts for systematic biases between the 
datasets. 

To visualize the effectiveness of batch effect correction, we per-
formed a Principal Component Analysis (PCA) both before and after 
applying the Empirical Bayes method. The pre-correction PCA 
showed clear clustering by dataset rather than by biological condi-
tion, while post-correction PCA demonstrated improved separation 
between BC and HC groups, confirming successful mitigation of 
technical variability between datasets. 

2.3. Principal Component Analysis (PCA) 

To visualize clustering of samples, PCA was carried out on the 
merged miRNA expression data from both datasets. PCA was com-
pleted utilizing the prcomp () function in R, and the first two prin-
cipal components (PC1 and PC2) were plotted to assess the 
separation between BC and HC samples. 

2.4. Differential miRNA expression analysis 

The differentially expressed miRNAs (DEMs) between BC and 
HC groups were identified using the limma package in R [21], 
applying an adjusted p-value of less than 0.05, and a criterion of 
|Log2(fold change)| ≥ 1 is required. The DEMs were visualized by 
a volcano plot. 

2.5. WGCNA (Weighted Gene Co-Expression Network Analysis) 

To explore the connections among miRNAs and clinical traits, 
WGCNA was carried out utilizing the WGCNA package in R [22]. 
A soft threshold power (b) was chosen to guarantee a network 
devoid of scale, and miRNA expression profiles were used to 
construct a network of co-expression. Hierarchical clustering 
was accustomed to identify miRNA modules that exhibit 
comparable expression profiles. A dynamic tree cutting method 
was applied to detect these modules. For additional considera-
tion, the module having the strongest association to BC was 
chosen. 

2.6. Identification of key miRNAs using Least Absolute Shrinkage and 
Selection Operator (LASSO) regression 

To identify key miRNAs for BC, an integrated approach combin-
ing differential expression analysis, WGCNA, and LASSO regression 
was employed. A Venn diagram was created to show the overlap 
between DEMs and miRNAs in the turquoise module. These over-
lapped miRNAs were further evaluated using LASSO regression, 
and it was carried out using R’s glmnet package. This method 
was employed to reduce the dimensionality of the miRNA dataset 
by penalizing less important features and selecting a subset of 
miRNAs that best differentiate between BC and HC. The optimal 
lambda value was selected using the one-standard-error rule and 
3-fold cross-validation. The top 7 miRNAs identified by LASSO 
regression, including hsa-miR-142-3p, hsa-miR-32-5p, hsa-miR-
374a-3p, hsa-miR-155-5p, hsa-miR-425-3p, hsa-miR-584-5p, and 
hsa-miR-185-5p, were further analyzed for their potential 
diagnostic value. 
3

2.7. Expression profiles and clinical significance of key miRNAs 

The seven major miRNAs’ expression levels were examined by 
hierarchical clustering using ComplexHeatmap [2.13.1] [23]. The 
examination of univariate logistic regression was conducted to 
determine the clinical significance of the 7 key miRNAs. A forest 
plot was generated to summarize for every miRNA, including odds 
ratios (ORs) and 95% confidence intervals (CIs). 

2.8. Predictive modeling and evaluation 

To evaluate the diagnostic potential of the identified miRNAs, 
predictive models were constructed using Random Forest (RF), 
Logistic Regression (LR), and Support Vector Machines (SVMs). 
These models were trained using the expression levels of the 7 
key miRNAs identified by LASSO. The models’ predictive power 
was assessed using metrics such as Receiver Operating Character-
istic (ROC) curves, calibration curves, brier scores, and Decision 
Curve Analyses (DCAs). 

To address potential overfitting concerns, particularly with the 
SVM model that achieved an AUC of 1.0, we implemented 5-fold 
cross-validation for more robust model evaluation. This approach 
provides a more realistic assessment of model performance by 
testing on data not used in training, thus mitigating overfitting 
risks associated with our relatively small sample size. 

2.9. Identification of miRNA-targeting drugs 

To explore the therapeutic implications of the identified miR-
NAs, potential miRNA-targeting drugs were investigated. The Drug 
Gene Interaction Database (DGIdb) was queried to identify 
approved and investigational drugs targeting the key miRNAs iden-
tified in this study [24]. 

2.10. Functional enrichment analysis of miRNA targets 

To understand the biological pathways potentially regulated by 
the identified key miRNAs, we performed functional enrichment 
analysis. The predicted target genes of the 7 key miRNAs were 
identified using miRTarBase and TargetScan databases. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses were conducted using the clusterProfiler 
R package to identify significantly enriched biological processes, 
molecular functions, cellular components, and signaling pathways. 
Enrichment was considered significant at an adjusted p-
value < 0.05. The results of these analyses are summarized in 
Table 2. 

2.11. Statistical analysis 

For all statistical studies, R software (version 4.3.2) was used. 
For all analyses, the significance threshold was established at 
p < 0.05, and multiple comparison corrections were done where 
applicable using the Benjamini-Hochberg method. 

3. Results 

3.1. Dataset integration and differential expression analysis of 
circulating exosomal miRNAs 

The integration of two independent datasets, GSE205374 and 
GSE228881, identified a total of 1201 miRNAs in plasma samples 
derived from 10 patients with BC attacks and 10 HC. Of these, 
759 miRNAs were identified in GSE205374, and 442 miRNAs were 
identified in GSE228881. An UpSet plot of the two datasets



X. Han, A. Wu and M. Bao Electronic Journal of Biotechnology 78 (2025) 1–13

Table 2 
Summary of GO and KEGG pathway enrichment analysis of key miRNA targets. 

Category Term Description Count p-value Adjusted p-value 

GO:BP GO:0006954 Inflammatory response 32 2.5E-4 0.003 
GO:BP GO:0042127 Regulation of cell proliferation 47 5.8E-4 0.008 
GO:BP GO:0048265 Response to pain 18 9.1E-4 0.012 
GO:BP GO:0006939 Smooth muscle contraction 15 1.8E-3 0.021 
GO:MF GO:0005125 Cytokine activity 28 3.1E-4 0.004 
GO:CC GO:0005887 Integral component of plasma membrane 56 2.7E-3 0.023 
KEGG hsa04064 NF-kappa B signaling pathway 22 5.2E-4 0.007 
KEGG hsa04010 MAPK signaling pathway 35 8.4E-4 0.011 
KEGG hsa04668 TNF signaling pathway 18 1.2E-3 0.015 
KEGG hsa04921 Oxytocin signaling pathway 23 2.5E-3 0.026 

*GO:BP = Gene Ontology Biological Process; GO:MF = Gene Ontology Molecular Function; GO:CC = Gene Ontology Cellular Component; KEGG = Kyoto Encyclopedia of Genes 
and Genomes. 
revealed that 221 miRNAs were shared between them (Fig. 1A). 
Analysis of principal components (PCAs) of the combined datasets 
revealed a clear division between BC patients (red) and healthy 
controls (blue), although the second principal component (PC2) 
explains 48.2% of the variation, and the first principal component 
(PC1) 7.8% of the total variance (Fig. 1B). Differential expression 
analysis revealed 144 upregulated and 4 downregulated miRNAs 
in BC compared to HC, based on a |Log2 (fold change)| ≥ 1 and 
adjusted p-value < 0.05. These differentially expressed miRNAs 
(DEMs) are depicted in a volcano plot, where red indicates miRNAs 
that are considerably elevated, blue indicates miRNAs that are 
downregulated, and gray indicates miRNAs that are not significant 
(Fig. 1C). The effectiveness of batch effect correction was confirmed 
by PCA analysis (Fig. 1D). 

3.2. Weighted Gene Co-Expression Network Analysis (WGCNA) of 
circulating exosomal miRNAs 

To explore the co-expression patterns of miRNAs, an analysis of 
the WGCNA was conducted on the circulating exosomal miRNA 
profiles. The power of soft-thresholding for network construction 
was established using a scale-free topology fit index (R2 ), with a 
cutoff of R2 = 0.85, corresponding to a power of 9 (Fig. 2A). This 
power value ensured an optimal network construction while main-
taining reliable connectivity. The hierarchical clustering dendro-
gram of miRNAs revealed distinct co-expression modules, with 
the turquoise module showing strong associations with BC 
patients, as indicated by dynamic module detection (Fig. 2B). The 
turquoise module was discovered to be strongly negatively con-
nected with HC (r = −0.987, p = 8.3e-16) and strongly favorably 
connected with BC (r = 0.987, p = 8.3e-16), suggesting its critical 
role in BC pathogenesis (Fig. 2C). 

3.3. Identification of key miRNAs through integration of differential 
expression analysis, WGCNA, and LASSO regression 

To identify key miRNAs associated with BC, we integrated 
the results of differential expression analysis, WGCNA, and 
Fig. 1. Dataset integration, principal component analysis (PCA), and differential expr
of 10 patients with biliary colic (BC) attack and 10 healthy controls (HCs). (A) The le
GSE205374 (759 miRNAs, blue) and GSE228881 (442 miRNAs, red). The UpSet plot on the
shared miRNAs. (B) Principal Component Analysis (PCA) of miRNA expression profiles fro
(blue) and patients with BC (red). The first principal component (PC1) accounts for 4
demonstrating a clear division between HC and BC groups. (C) Volcano plot of differen
identified 144 significantly upregulated (red) and 4 downregulated (blue) miRNAs, based
miRNAs are shown in gray. (D) PCA plots before and after batch effect correction. Left
correction, with samples clustering by dataset origin rather than biological condition. Ri
separation based on biological condition (BC vs HC) rather than technical batch effects. (F
to the web version of this article.) 
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LASSO regression. The Venn diagram in Fig. 3A shows the over-
lap between the DEMs and the miRNAs within the turquoise 
module identified in WGCNA, revealing a total of 148 miRNAs 
that intersect. To further refine the selection of key miRNAs, a 
LASSO regression model was applied. Using the one-standard-
error rule, 7 key miRNAs were identified: hsa-miR-142-3p, 
hsa-miR-32-5p, hsa-miR-374a-3p, hsa-miR-155-5p, hsa-miR-
425-3p, hsa-miR-584-5p, and hsa-miR-185-5p (Fig. 3B). The 
coefficient profiles of these miRNAs were plotted, demonstrating 
that these 7 miRNAs remained non-zero at the optimal lambda 
value, further validating their potential relevance in BC 
(Fig. 3C). 
3.4. Expression profiles and clinical significance of key miRNAs in BC 

To evaluate the patterns of expression of the 7 key miRNAs in 
BC, hierarchical clustering analysis was performed. The degrees 
of manifestation of these miRNAs were noticeably greater in BC 
patients as opposed to HC, as evidenced by the heatmap showing 
distinct clustering patterns for BC (red) and HC (blue) groups 
(Fig. 4A). Logistic regression analysis of the 7 key miRNAs revealed 
that all were significantly associated with BC, with hsa-miR-185-
5p showing the highest odds ratio (OR = 8.79, 95 % CI: 1.43– 
54.04), suggesting its strong potential as a biomarker for BC 
(Fig. 4B). 

The biological functions of these key miRNAs may contribute 
significantly to BC pathophysiology. hsa-miR-155-5p is known to 
modulate inflammatory pathways through regulation of NF-jB sig-
naling, potentially influencing the inflammatory response during 
biliary obstruction. hsa-miR-142-3p has been implicated in 
immune cell function and inflammatory modulation, while hsa-
miR-185-5p has been associated with cell proliferation and pain 
signaling pathways. Additionally, hsa-miR-32-5p may regulate 
smooth muscle contractility, potentially relevant to the spasmodic 
pain characteristic of BC. These functional roles highlight the com-
plex molecular mechanisms potentially underlying BC pathogene-
sis (Fig. 4C ).
ession analysis of circulating exosomal miRNAs extracted from plasma samples 
ft-hand bar plot displays the overall quantity of miRNAs identified in each dataset: 
 right depicts the intersection of miRNAs between the two datasets, highlighting 221 
m merged datasets. PCA was performed to assess the clustering of samples into HC 
8.2% as well as the second main component (PC2) of the variance explains 7.8%, 
tially expressed miRNAs (DEMs) in BC versus HC. Differential expression analysis 
 on |Log2 (fold change)| > 1 and adjusted p-value < 0.05 thresholds. Non-significant 
 panel shows the PCA plot before applying the Empirical Bayes method for batch 
ght panel shows the PCA plot after batch effect correction, demonstrating improved 
or interpretation of the references to color in this figure legend, the reader is referred 

" 
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Fig. 2. WGCNA (Weighted Gene Co-Expression Network Analysis) of circulating exosomal miRNAs. (A) Selection of soft-thresholding power for network construction. A 
function of soft-thresholding power is displayed in the top panel along with the scale-free topology fit index (R2 ). A cutoff of R2 = 0.85 was selected, and the corresponding 
power of 9 was chosen (indicated by the red dashed line). The bottom panel illustrates the mean connectivity of the miRNA network across varying soft-thresholding powers, 
showing a decline as the power increases. (B) Hierarchical clustering dendrogram and dynamic module detection. The dendrogram groups miRNAs based on their topological 
overlap, with modules identified by dynamic tree cutting. The module colors represent distinct miRNA co-expression clusters, with key modules shown in turquoise. Sample 
traits for HC and BC groups are displayed below, highlighting distinct module associations with each group. (C) Heatmap showing the correlation of key modules 
(MEturquoise and MEgrey) with HC and BC groups. The turquoise module exhibits a strong negative correlation with HC (r = −0.987, p = 8.3e-16) and a strong positive 
correlation with BC (r = 0.987, p = 8.3e-16). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
3.5. Evaluation of predictive models for distinguishing healthy controls 
BC patients 

The predictive capacity of the 7 key miRNAs in differentiating 
between HC and BC patients was evaluated using three machine 
learning models: Random forest (RF), logistic regression (LR), and 
support vector machines (SVMs). The curves for receiver operating 
characteristics (ROCs) demonstrated that both the RF and SVM 
models achieved perfect discrimination between BC and HC, hav-
ing an Area Under the Curve (AUC) of 1.0. In contrast, the LR model 
exhibited a lower AUC of 0.875 (Fig. 5A). Further evaluation using 
calibration plots revealed that the SVM model with optimal cali-
bration was the lowest brier score (0.037), followed by RF (Brier 
score = 0.062) and LR (Brier score = 0.332) (Fig. 5B). Decision curve 
analysis (DCA) indicated that the SVM and RF models provided the 
highest net benefit at most threshold probabilities, making them 
more clinically valuable for predicting BC compared to the LR 
model and clinical extremes (Fig. 5C). 

The 5-fold cross-validation results supported the high 
performance of our models, though with slightly reduced metrics 
compared to the initial evaluation, suggesting some degree of 
6

overfitting in the original models. The cross-validated AUCs were 
0.95 for SVM, 0.92 for RF, and 0.85 for LR, providing a more realistic 
estimate of how these models might perform on independent data. 
These findings underscore the potential of our miRNA signatures as 
diagnostic biomarkers while acknowledging the need for valida-
tion in larger, independent cohorts (Fig. 5D, Table 3). 

3.6. Functional enrichment analysis of predicted miRNA targets 

GO and KEGG pathway analyses of the predicted target genes of 
our 7 key miRNAs revealed significant enrichment in several bio-
logical processes and signaling pathways relevant to BC patho-
physiology. Enriched GO terms included inflammatory response 
(GO:0006954, adjusted p = 0.003), regulation of cell proliferation 
(GO:0042127, adjusted p = 0.008), response to pain 
(GO:0048265, adjusted p = 0.012), and smooth muscle contraction 
(GO:0006939, adjusted p = 0.021). KEGG pathway analysis identi-
fied enrichment in NF-jB signaling (hsa04064, adjusted p = 0.007), 
MAPK signaling (hsa04010, adjusted p = 0.011), and TNF signaling 
(hsa04668, adjusted p = 0.015) pathways. These findings provide 
insight into the potential molecular mechanisms through which
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Fig. 3. Identification of key miRNAs through integration of differential expression analysis, WGCNA, and LASSO regression. (A) The Venn diagram illustrates the 
intersection between DEMs (blue) and miRNAs within the turquoise module (red) from WGCNA. A total of 148 miRNAs were found to overlap. (B) LASSO regression model for 
selection of key miRNAs. Binomial deviance is plotted as a function of log-transformed lambda values (log(k)). The red dots show the standard deviation, while the error bars 
show the mean deviation. The optimal lambda value was selected using the one-standard-error rule (right dashed line), resulting in the identification of 7 key miRNAs, 
including hsa-miR-142-3p, hsa-miR-32-5p, hsa-miR-374a-3p, hsa-miR-155-5p, hsa-miR-425-3p, hsa-miR-584-5p, hsa-miR-185-5p. (C) LASSO coefficient profiles of 
candidate miRNAs. The coefficient trajectories of miRNAs are shown as a function of log-transformed lambda values. As the penalty term increases, most coefficients shrink 
toward zero, leaving 7 non-zero coefficients at the optimal lambda. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 
these miRNAs may contribute to BC development and symptoma-
tology (Fig. 6, Table 2). 

3.7. miRNA-drug interaction network highlighting potential 
therapeutic targets for BC 

A miRNA-drug interaction network was constructed to explore 
potential therapeutic interventions for BC. The network high-
lighted the relationship between the 7 key miRNAs and existing 
miRNA-targeting drugs. Among the key miRNAs, hsa-miR-155-5p 
was found to be targeted by two therapeutic candidates, Rem-
larsen and Cobomarsen, emphasizing the possibility of using hsa-
miR-155-5p as a target for treatment of BC (Fig. 7). However, the 
other key miRNAs (hsa-miR-185-5p, hsa-miR-584-5p, hsa-miR-
32-5p, hsa-miR-142-3p, hsa-miR-425-3p, and hsa-miR-374a-3p) 
were not linked to any known miRNA-targeting drugs in the DGIdb 
database, indicating a need for further investigation into potential 
therapeutic options targeting these miRNAs. 

Notably, Cobomarsen (MRG-106) is an LNA-modified antisense 
oligonucleotide that specifically inhibits miR-155 activity and has 
entered clinical trials for certain lymphomas. It demonstrates 
7

potent anti-inflammatory effects that could potentially benefit BC 
patients by modulating inflammatory pathways. Similarly, Rem-
larsen (MRG-201) is designed to mimic miR-29b and has shown 
promising results in Phase 2 clinical trials for fibrotic conditions. 
While these drugs have not been specifically tested for BC, their 
mechanisms of action targeting inflammatory and fibrotic pro-
cesses suggest potential therapeutic applications in managing BC 
symptoms and progression. 

3.8. Comparison of miRNA signatures across biliary tract diseases 

To assess the specificity of our identified miRNA signatures for 
BC, we compared our findings with published miRNA profiles from 
related biliary conditions. The miRNA signatures we identified in 
BC show partial overlap with those reported in cholecystitis and 
gallbladder cancer, particularly regarding hsa-miR-155-5p, which 
appears to be a common inflammatory mediator across biliary con-
ditions. However, several of our key miRNAs, including hsa-miR-
185-5p and hsa-miR-584-5p, appear more specific to BC. In partic-
ular, Yang et al.’s study on gallbladder carcinoma [16] identified 
different key miRNAs than our BC signature, suggesting disease-
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Fig. 4. Expression profiles and clinical significance of key miRNAs identified in BC. (A) The expression levels of the 7 key miRNAs identified through LASSO regression were 
subjected to hierarchical clustering. Expression levels are normalized and presented as a blue gradient (low expression) to red (high expression). Distinct clustering patterns 
are observed, with BC patients (red group label) characterized by consistently higher expression levels of these miRNAs compared to HC subjects (blue group label). (B) A 
forest plot summarizes the odds ratios (OR) and 95% confidence intervals (CI) for each key miRNA from logistic regression analysis. All 7 miRNAs are significantly associated 
with BC. Notably, hsa-miR-185-5p exhibits the highest OR (8.79, 95% CI: 1.43–54.04), suggesting its strong potential as a biomarker for BC. (C) Biological functions of key 
miRNAs in BC. Schematic diagram illustrating the known biological functions of the 7 key miRNAs and their potential roles in BC pathophysiology. The diagram shows hsa-
miR-155-5p regulating inflammatory response through NF-jB signaling, hsa-miR-142-3p involved in immune modulation, hsa-miR-185-5p associated with pain signaling 
pathways, and hsa-miR-32-5p potentially regulating smooth muscle contractility relevant to BC symptoms. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
specific alterations despite the anatomical proximity. This compar-
ative analysis highlights the potential of our miRNA panel to 
specifically distinguish BC from other biliary diseases, though fur-
ther direct comparative studies are needed to confirm this speci-
ficity (Fig. 8, Table 4). 

4. Discussion 

This study explores the potential of circulating exosomal 
miRNA signatures as biomarkers and therapeutic targets in BC, a 
8

condition characterized by episodic severe pain due to gallstone-
induced obstruction of the biliary tract. By integrating two inde-
pendent datasets (GSE205374 and GSE228881), we identified a 
comprehensive miRNA signature that differentiates BC patients 
from HC, uncovering novel perceptions of the molecular processes 
that underlie BC and its capacity to clinical application. 

The integration of two independent datasets revealed a sub-
stantial number of circulating exosomal miRNAs, with 221 miRNAs 
shared between the two datasets. PCA demonstrated a clear sepa-
ration between BC patients and HC, highlighting the possibility of
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Fig. 5. Evaluation of predictive models for distinguishing BC patients from HCs using key miRNAs. (A) Receiver Operating Characteristic (ROC) curves for Random Forest 
(RF), logistic regression (LR), and support vector machine (SVM) models. The performance of the three predictive models was assessed using the test set from the merged 
dataset. The SVM model achieved the highest area under the curve (AUC = 1.0), indicating perfect discrimination between BC and HC. The RF model additionally demonstrated 
an AUC of 1.0, but the LR model achieved an AUC of 0.875. (B) Calibration plot of predictive models showing the observed probabilities versus predicted probabilities for LR, 
RF, and SVM models. The SVM model showed the best calibration with the lowest Brier score (0.037), followed by RF (Brier score = 0.062) and LR (Brier score = 0.332). These 
results highlight the superior reliability of the SVM model in aligning predictions with actual outcomes. (C) Decision curve analysis (DCA) for clinical utility of predictive 
models. Net benefit is plotted as a function of threshold probability for each model. The SVM and RF models demonstrated the highest net benefit across most threshold 
probabilities when compared to the LR model and clinical extremes (‘‘None” and ‘‘All”). These results suggest that the SVM and RF models could provide the most significant 
clinical value in predicting BC based on the expression profiles of 7 miRNAs. (D) Cross-validation results of prediction models. Comparison of the original model performance 
metrics (AUC, sensitivity, specificity) with 5-fold cross-validation results. The cross-validated AUCs were 0.95 for SVM, 0.92 for RF, and 0.85 for LR, showing slightly reduced 
but still strong performance metrics compared to the original models, thus providing a more realistic assessment of model performance on unseen data. 
exosomal miRNAs as diagnostic indicators for BC. The differential 
expression analysis identified 148 DEMs, with 144 miRNAs being 
upregulated in BC patients. These results are consistent with 
9

earlier research that has demonstrated the utility of exosomal 
miRNAs; these findings align with previous studies that have 
explained inflammatory conditions [25,26]. The upregulation of
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Table 3 
Summary of machine learning model performance. 

Model Accuracy Sensitivity Specificity PPV NPV Original AUC 5-fold CV AUC Brier Score 

SVM 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.037 
RF 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.062 
LR 0.85 0.80 0.90 0.89 0.82 0.875 0.85 0.332 

SVM = Support Vector Machine; RF = Random Forest; LR = Logistic Regression; PPV = Positive Predictive Value; NPV = Negative Predictive Value; AUC = Area Under the Curve; 
CV = Cross-Validation. 

Fig. 6. Functional enrichment analysis of predicted targets of key miRNAs. (A) Top enriched Gene Ontology (GO) biological process terms for predicted targets of the 7 key 
miRNAs, highlighting relevance to BC pathophysiology including inflammatory response, regulation of cell proliferation, response to pain, and smooth muscle contraction. (B) 
KEGG pathway enrichment analysis showing significantly enriched signaling pathways including NF-jB signaling, MAPK signaling, and TNF signaling pathways. (C) Network 
visualization of key miRNAs and their predicted target genes involved in pain signaling and inflammatory response pathways. 
miRNAs in BC patients may reflect the inflammatory and patholog-
ical processes associated with biliary colic, potentially offering a 
minimally invasive diagnostic tool. The identification of DEMs is 
consistent with previous studies that report altered miRNA profiles 
in bile, plasma, and serum in gallbladder diseases, including biliary 
colic and cholangiocarcinoma [27,28]. However, our study’s origi-
10
nality is found in the use of exosomal miRNAs, which are known 
to be more stable in circulation compared to free-floating miRNAs. 
This stability is crucial for developing reliable biomarkers capable 
of being detected in routine clinical environments.

The WGCNA of the exosomal miRNA profiles further deepened 
our understanding of the regulatory mechanisms in BC. The
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Fig. 7. Mirna-drug interaction network highlighting potential therapeutic targets for BC. The interaction network depicts the relationship between key miRNAs identified 
in BC (blue nodes) and existing miRNA-targeting therapeutics (red nodes). Two therapeutic candidates, Remlarsen and Cobomarsen, are shown to target hsa-miR-155-5p 
within the 7 key miRNAs, emphasizing the potential of hsa-miR-155-5p as a therapeutic intervention for BC. The other key miRNAs — hsa-miR-185-5p, hsa-miR-584-5p, hsa-
miR-32-5p, hsa-miR-142-3p, hsa-miR-425-3p, and hsa-miR-374a-3p — are currently not linked to known miRNA-targeting drugs extracted from DGIdb database. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Comparison of miRNA signatures across biliary tract diseases. Venn 
diagram showing overlap between miRNA signatures identified in our BC study 
compared with published signatures from cholecystitis, gallbladder carcinoma, and 
cholangiocarcinoma, highlighting BC-specific miRNAs and shared inflammatory 
mediators. 

Table 4 
Comparison of key miRNA expression in different biliary diseases. 

miRNA BC (Our Study) Cholecystitis

hsa-miR-155-5p Upregulated Upregulated
hsa-miR-185-5p Upregulated Not reported
hsa-miR-142-3p Upregulated Upregulated
hsa-miR-32-5p Upregulated Not reported
hsa-miR-374a-3p Upregulated Not reported
hsa-miR-425-3p Upregulated Not reported
hsa-miR-584-5p Upregulated Not reported

*This comparative analysis demonstrates that while some miRNAs like hsa-miR-155-5p 
hsa-miR-584-5p appear more specific to BC, suggesting potential disease-specific bioma

11
turquoise module, which showed a strong positive correlation with 
BC patients and a negative correlation with HC, emerged as a key 
module associated with BC pathogenesis. This suggests that the 
miRNAs within this module play critical roles in the molecular 
alterations observed in BC. Previous research has also emphasized 
the importance of co-expression networks in understanding com-
plex diseases, as they provide insights into the interactions 
between genes and miRNAs that drive disease processes [29,30]. 
The strong association of the turquoise module with BC underlines 
the potential of miRNA modules in identifying disease-specific sig-
natures and therapeutic targets. 

Through the integration of differential expression analysis, 
WGCNA, and LASSO regression, we identified 7 key miRNAs (hsa-
miR-142-3p, hsa-miR-32-5p, hsa-miR-374a-3p, hsa-miR-155-5p, 
hsa-miR-425-3p, hsa-miR-584-5p, and hsa-miR-185-5p) that are 
strongly associated with BC. These miRNAs are highly expressed 
in BC patients, and their expression patterns can serve as reliable 
biomarkers for disease diagnosis. Among these, hsa-miR-185-5p 
was found to have the highest odds ratio, suggesting its potential 
as a key diagnostic marker. Previous studies have reported the 
involvement of several of these miRNAs in other malignancies, 
such as hsa-miR-155-5p, which has been implicated in inflamma-
tory and immune-related processes [31,32]. The strength of our
Gallbladder Carcinoma Cholangiocarcinoma Reference 

Upregulated Upregulated [16,27,28] 
Not reported Not reported − 
Not reported Upregulated [27] 
Not reported Not reported − 
Not reported Not reported − 
Not reported Not reported − 
Downregulated Not reported [16] 

are commonly dysregulated across biliary diseases, others like hsa-miR-185-5p and 
rkers. 
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research’s correlation between hsa-miR-155-5p and BC suggests 
that it may be used as a therapeutic target as well as a biomarker. 

Our functional enrichment analysis revealed that targets of the 
identified key miRNAs are significantly involved in inflammatory 
response, pain signaling, and smooth muscle contraction path-
ways, all directly relevant to BC pathophysiology. For instance, 
hsa-miR-155-5p regulates NF-jB signaling, a central pathway in 
inflammation, while predicted targets of hsa-miR-185-5p are 
enriched in pain response pathways. Additionally, hsa-miR-32-5p 
targets genes involved in smooth muscle contraction, potentially 
contributing to the characteristic colicky pain of BC. These findings 
provide mechanistic insights into how these miRNAs may con-
tribute to BC development and symptomatology, beyond their util-
ity as biomarkers (Fig. 7, Table 2). 

To further validate the diagnostic utility of these miRNAs, three 
machine learning techniques were used as models: LR, RF, and 
SVM. The SVM and RF models demonstrated perfect discrimination 
between BC and HC with an AUC of 1.0, while the LR model showed 
a slightly lower AUC of 0.875. These outcomes highlight how effec-
tive machine learning is in enhancing the predictive accuracy of 
biomarkers. The excellent performance of the SVM and RF models 
is particularly promising, as they offer potential for clinical applica-
tions, where accurate, early diagnosis of BC could lead to better 
patient outcomes. Previous studies have shown how well machine 
learning models anticipate a variety of diseases using miRNA sig-
natures, reinforcing the value of combining advanced computa-
tional techniques with molecular biomarkers [33,34]. 

While our models showed excellent performance metrics, we 
acknowledge the potential for overfitting given our relatively small 
sample size. Our 5-fold cross-validation analysis resulted in 
slightly reduced but still strong performance metrics (cross-
validated AUCs of 0.95 for SVM, 0.92 for RF, and 0.85 for LR), pro-
viding a more realistic assessment of model performance on 
unseen data. These findings suggest that while some degree of 
overfitting may be present, the identified miRNA signatures retain 
strong discriminatory power. Future studies with larger, indepen-
dent cohorts will be crucial to fully validate these models 
(Fig. 5D, Table 3). 

Beyond their diagnostic potential, the key miRNAs found in this 
investigation could also act as targets for therapy for BC. miRNA-
based therapies are emerging as a promising strategy for treating 
various diseases, including cancer [35]. The miRNA-drug interac-
tion network revealed that hsa-miR-155-5p is targeted by two 
therapeutic candidates, Remlarsen and Cobomarsen. These drugs 
have demonstrated potential in clinical trials for several illnesses, 
including cancer and autoimmune disorders, suggesting that tar-
geting hsa-miR-155-5p could be an effective therapeutic approach 
for BC [36,37]. However, the other key miRNAs in our study (hsa-
miR-185-5p, hsa-miR-584-5p, hsa-miR-32-5p, hsa-miR-142-3p, 
hsa-miR-425-3p, and hsa-miR-374a-3p) do not yet have any 
known targeted drugs, indicating a need for further research into 
potential therapeutic interventions. 

One of the study’s main weaknesses is its rather small sample 
size, which could limit how far the results can be applied. Further-
more, the lack of broader clinical validation poses a challenge in 
confirming the applicability of identified biomarkers in diverse 
patient populations. Potential batch effects during sample process-
ing could also introduce variability in miRNA expression profiles. 
Despite our efforts to correct for batch effects using the Empirical 
Bayes method, some technical variability may persist. Additionally, 
the limited demographic information available in the public data-
sets prevented us from controlling for potential confounding fac-
tors such as age, sex, and comorbidities, which could influence 
miRNA expression patterns. The perfect discrimination achieved 
by our SVM and RF models may reflect some degree of overfitting, 
12
as suggested by our cross-validation analysis [38,39]. These limita-
tions suggest a need for larger-scale studies that encompass vary-
ing demographics and clinical settings to robustly validate our 
findings as recommended in previous biomarker discovery studies 
[40,41]. 

In conclusion, this study highlights the possibilities for diagno-
sis and treatment of circulating exosomal miRNA signatures in BC. 
By identifying key miRNAs associated with BC and demonstrating 
their predictive power using machine learning models, we provide 
a solid foundation in order to create miRNA-based biomarkers for 
BC. Furthermore, the identification of therapeutic candidates tar-
geting hsa-miR-155-5p offers new avenues for the treatment of 
BC. These findings underscore the need for further investigation 
into the clinical utility of exosomal miRNAs in BC and other biliary 
tract diseases. Future studies should concentrate on investigating 
these miRNAs’ functional roles and validating them in larger 
cohorts the pathogenesis of BC to refine their potential for both 
diagnosis and therapy using advanced analytical techniques 
[42,43]. 
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