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Background: Several MYB genes belonging to R2R3 MYB transcription factors have been used in several plant
species to enhance anthocyanin production, and have shown various expression or regulation patterns. This
study focused on the effect of ectopic expression of an RsMYB1 isolated from radish (Raphanus sativa) on
chrysanthemum cv. ‘Shinma’.
Results: The RT-PCR results confirmed that RsMYB1 regulated the expression of three key biosynthetic genes
(CmF3H, CmDFR, and CmANS) that are responsible for anthocyanin production in transgenic chrysanthemum,
but were not detected in the non-transgenic line. In all transgenic plants, higher expression levels of key
biosynthetic genes were observed in flowers than in leaves. However, the presence of RsMYB1 in
chrysanthemum did not affect any morphological characteristics, such as plant height, leaf shape or size, and
number of flowers. Furthermore, no anthocyanin accumulation was visually observed in the leaves and floral
tissue of any of the transgenic lines, which was further confirmed by anthocyanin content estimation.
Conclusion: To our knowledge, this is the first time the role of an MYB transcription factor in anthocyanin
production has been investigated in chrysanthemum.

© 2015 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

It has becomepopular to usemolecular breeding techniques tomodify
flower color in ornamental flowering crops, and they have been applied
to roses, carnations, and chrysanthemums. Agrobacterium-mediated
genetic transformation is the most commonly used molecular breeding
technique for these purposes.

Flower color is determined by the presence of compounds such as
flavonoids, carotenoids, and betalains [1]. Anthocyanins belong to the
flavonoids and exhibit a wide range of colors. Generally, the three
anthocyanin biosynthetic pathways, namely cyanindin, pelargonindin,
and delfinindin, which are found in many plants, produce red/pink,
brick-red/orange, and blue/violet pigments, respectively [2]. Thus, it
seems that at least one of the three biosynthesis pathways is needed
to modify flower colors.

MYB plant transcription factors, alone or in combination with basic
helix-loop-helix (bHLH) and WD40 transcription factors, have been
used to control the expression of genes involved in anthocyanin
production [3,4,5,6,7,8,9,10]. Several years ago, the important roles
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played by MYB genes belonging to the R2R3 family in flower color
pigmentation were identified [11,12]. In addition, ectopic over-
expression of R2R3 MYB genes in transgenic plants has also been
shown to distinctly enhance anthocyanin accumulation, and in
many cases, this affected pigmentation within plant species other
than those from which the MYB transgenes originated [10,13,14,15,16,
17,18,19,20,21]. Ectopic expression of the Arabidopsis MYB genes:
AtMYB75 (PAP1) and AtMYB90 (PAP2), in Nicotiana tabacum enhanced
anthocyanin pigmentation in most parts of the transgenic plants [22].

Radish RsMYB, which belongs to the R2R3-MYB transcription factor
family, was found to be highly expressed in the skin and flesh of three
radish cultivars (Seo Ho, Man Tang Hong, and Hong Feng No.1), and
causes increased anthocyanin accumulation [23]. Koes et al. [24]
also suggested that RsMYB might also regulate biosynthetic genes
involved in anthocyanin production because it has sequence
homology to Arabidopsis MYB genes (PAP1/2), which are widely
known as anthocyanin regulatory genes. According to results from
our preliminary experiments, genetic transformation of petunia
using RsMYB1 enhanced anthocyanin production (unpublished
data). InMYB1 encoding the R2R3-MYB transcription factor isolated
from morning glory (Ipomoea nil), is strongly expressed in the flower
tube and limb. Thus, we created the RsMYB1 construct by placing
it under the control of two promoters (a constitutive promoter,
sevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejbt.2015.07.001&domain=pdf
http://dx.doi.org/10.1016/j.ejbt.2015.07.001
mailto:ckkim@knu.ac.kr
http://dx.doi.org/10.1016/j.ejbt.2015.07.001
http://www.sciencedirect.com/science/journal/


Table 1
Primers and PCR conditions used in this study.

Genes Primer PCR conditions

ACTIN F-ACA ACG TTT TAC AAT GAG CTT CG
R-CCG TTC AGC AGT TGT AGT AA

95°C for 2 min, followed by 30
cycles of 95°C for 20 s, 57°C for 40

s, and 72°C for 1 min
F3H F-ACC CGG TTC GTC CGT GAT GAG G

R-TGC CTG GTG GTC CGC ATT CT
95°C for 2 min, followed by 30
cycles of 95°C for 20 s, 63°C for 40

s, and 72°C for 45 s
DFR F-ATG AAA GAA GAC TCA CCA GCC A

R-CTT CGT GAG TGG CCG CCT TT
95°C for 2 min, followed by 30
cycles of 95°C for 20 s, 58°C for 40

s, and 72°C for 1 min
ANS F-ATA CAT CCG AAC ACA AGA TG

R-AAT CGC TAG GTG TCG AGG GCC
95°C for 2 min, followed by 30
cycles of 95°C for 20 s, 58°C for 40

s, and 72°C for 30 s
RsMYB1 F-ATG GAG GGT TCG TCC AAA GG

R-GAA ACA CTA ATC AAA TTA CAC
AGT CTC TCC

98°C for 30 s, followed by
undergoing 25 cycles of 98°C for
10 s, and 60°C for 30 s,

Fig. 1. The non-transgenic (control) and three transgenic lines (S1, S2, and S3) have
similar morphologies.
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cauliflower mosaic virus CaMV 35S, and a petal-specific promoter,
InMYB1, isolated from morning glory). The construct was introduced
into commercial chrysanthemum cv. Shinma, which is a hexaploid
cultivar and has several desirable horticultural traits, such as large
flower size, resistance to rust disease, and a long vase life, but its
flower color is white.

Overexpression of VvMYB5b occurs in the skin tissue of tomato after
fruit color has developed, and this is due to anthocyanin accumulation
[20]. The tomato plant showed not only color pigmentation, but also
morphological changes, such as dwarfism, and modified leaf structure,
flower shape, and fruit texture [25]. Hence, we investigated the
morphology of the transgenic plants expressing RsMYB1. In addition,
since the main anthocyanin biosynthesis pathway in chrysanthemum
was the cyanin-based pathway, expressions of three key biosynthetic
genes (CmF3H. CmDFR, and CmANS) which are responsible for the
anthocyanin pathway were investigated.

2. Materials and methods

2.1. Vector construction and transformation

Agrobacterium tumefaciens strain GV3101, harboring a binary vector,
pB7WG2D, and an RsMYB1 gene isolated from radish (Raphanus sativa),
was used in this experiment. RsMYB1was placed under the control of two
promoters, a constitutive promoter (cauliflower mosaic virus CaMV 35S)
and a petal-specific promoter (InMYB1 isolated from morning glory (I.
nil)), in order to study transformations in chrysanthemum. Bar for
resistance to PPT was used to select the transgenic plants.

Briefly, 100 leaf explants (about 0.5 cm-long) were incubated with
the A. tumefaciens strain harboring RsMYB1. After co-cultivation at
dark condition, the explants were cultured on a medium consisting of
MS with 0.5 mg·L-1 BA and 0.5 mg·L-1 NAA, 3% sucrose, 3 g·L−1

gelrite (pH 5.8), and 125 mg·L−1 of Clavamox, and placed in the dark
at 25°C for 7 d. The explants were then cultured on the same medium,
except that it also contained 1.0 mg·L−1 of PPT, under a 16 h
photoperiod. After 6 weeks, the presence of the selection marker,
target, and promoter genes was detected by PCR analysis of the tested
samples (data not shown). Three lines (S1, S2, and S3) were
confirmed to be transgenic plants, so they were selected for
morphological and molecular characterization. The control was a plant
regenerated from explants not infected with Agrobacterium. The
plantlets were then transferred to pots filled with peat soil and placed
in the greenhouse.

2.2. Morphological characterization of the transgenic plants

The plant height differences between the transgenic lines and the
control plant were considered. In addition, the branching pattern of
the plants, flowering time, color pigmentation, and numbers of leaves
and flower buds were also compared.

2.3. Isolation of total RNA for reverse transcription polymerase chain
reaction (RT-PCR) analysis

The RNA samples were extracted from the leaves, and from flowers
at early flowering (F1) and at fully flowering (F2) using an RNeasy®
Plant Mini Kit (Qiagen, Germany), according to the manufacturer's
instructions. For analysis of RsMYB1 expression, total RNA extracted
from leaves of the three transgenic lines and the non-transgenic
line (control) was detected by RT-PCR. In terms of anthocyanin
biosynthetic genes expression, the RNA extracted from the leaves,
and from flowers at early flowering (F1) and at fully flowering
(F2) was detected. The first strand of cDNA was synthesized from
1 μg of total RNA using a High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, USA) according to the manufacturer's
instructions. Expression of the RsMYB1 gene in the samples was first
analyzed. The expression levels of the biosynthetic genes (CmF3H,
CmDFR, and CmANS) were then normalized using an internal control
gene (CmActin). PCR primers for the genes are described in Table 1,
along with their specific PCR conditions. The biosynthetic gene
primers were obtained from the coding sequences of several
chrysanthemum plants.

2.4. Analysis of anthocyanin content

Total anthocyanin content was analyzed according to the procedure
established by Naing et al. [26], with some modification. Briefly,
approximately 500 mg of plant material (leaves, or flowers at the
early (F1) or fully flowering (F2) stages) was excised from the plants
(the three transgenic lines and the control) that had been grown in a
greenhouse, and crushed, and the pigments extracted with 5 mL of
distilled water. The pigment samples were then incubated overnight
at 4°C after 5 mL of a 1% (w/v) hydrochloric acid in methanol solution
had been added. The supernatant was collected after centrifugation at
3000 rpm for 20 min and transferred to a 2 mL collection tube.
Absorbance was measured at 430–630 nm using a spectrophotometer
(U-2800: Hitachi, Tokyo, Japan). The concentration (mg/L) of each
sample was calculated according to the report of Sung et al. [27].

3. Results

3.1. Morphological characterization of transgenic lines containing RsMYB1

The presence of RsMYB1 in the three transgenic lines (S1, S2, and S3)
was detected by PCR (data not shown). However, as observed in Fig. 1,



Fig. 3.Morphological characterization of the leaf and the two different flower stages of the
non-transgenic (control, cont) and the three transgenic lines (S1, S2, and, S3) containing
RsMYB1. L: leaf. F1: early flowering stage, and F2: fully flowering stage.
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all transgenic lines exhibited similar branching patterns compared to
the control, resulting in no morphological differences between the
transgenic lines and the control. Plant heights were also similar, with
no shortening of the internodes, and there was no large variation in
the numbers of leaves and flowers on each plant. The flowering time
of the transgenic plants was found to be the same as that of the
control plants, and there were no differences in leaf size and shape.
Although the presence of RsMYB1 gene was detected by PCR analysis
(data not shown), this analysis did not show the exact gene
expressions because gene silencing and methylation were reported in
several plant transformations. Thus, confirmation of RsMYB1
expression by RT-PCR was performed, and it showed that the
expression levels of RsMYB1 in the transgenic lines were stable
(Fig. 2). Surprisingly, no difference in color pigmentation was
observed in either the leaves or flowers compared to the control plant
(Fig. 3), even though RsMYB1 was distinctly expressed.

3.2. RsMYB1 gene regulates the biosynthetic genes in chrysanthemum

The expression of the three biosynthetic genes (CmF3H, CmDFR, and
CmANS) was analyzed by RT-PCR to verify whether RsMYB1 regulated
the biosynthetic genes responsible for the anthocyanin biosynthetic
pathway. As Fig. 4 shows, CmF3H was expressed in all parts of the
transgenic plants, whereas in the control, CmF3H was only expressed
in the flowers at the early flowering stage (F1), and not in the leaves
(L) or flowers at the fully flowering stage (F2). Moreover, CmDFR was
not expressed at all in the control, whereas it was expressed in the
transgenic lines. Interestingly, CmANS could be detected in both the
control and the transgenic lines. CmF3H showed higher transcript
levels in flowers at the fully flowering stage, followed by the early
flowering stage, but much lower levels in the leaves of the transgenic
plants, whereas in the control, it was only expressed in flowers at the
F1 stage. Expression of CmDFR was stable in all tested parts of the
transgenic lines, but was downregulated as compared to CmActin
(internal control). CmANS expression level was similar in all tested
parts of the control plants; however, CmANS was differentially
expressed in the transgenic lines. The expression levels were generally
higher in flowers than in the leaves of the transgenic plants. Overall,
the RT-PCR analysis showed that the three key structural genes
responsible for anthocyanin accumulation were expressed in all tested
parts of the transgenic lines, but only in certain parts of the control
plant.

No anthocyanin accumulation was detected by morphological
observations. However, expression of the three key structural genes
could be detected; hence it was assumed that anthocyanin had
accumulated inside the leaves or flowers without it being expressed
morphologically. Thus, anthocyanin was extracted from the transgenic
leaves and flowers at the two different flowering stages (F1 and F2)
and compared to extracts from the control plant. Fig. 5 shows that
there was no color difference, which agreed with the anthocyanin
results for all tested parts of the transgenic and control plants. It was
further confirmed by a spectrophotometer that anthocyanin levels were
very low (approximately 0.001 mg g-1) in all the tested samples (Fig. 6).

4. Discussion

To date, genetic transformation techniques have been used to
develop transgenic chrysanthemums [28,29,30,31,32]. However,
transgenic chrysanthemums containing foreign MYB have not been
Fig. 2. RT-PCR analysis of RsMYB1 expression in the non-transgenic line (control, C) and
the three transgenic lines (S1, S2, and S3).
developed so far. In general, the introduction of MYB transcription
factors in many different plants has been shown to enhance color
pigmentation. However, it has affected the morphology of transgenic
plants. Mahjoub et al. [25] reported that when Vitis vinifera R2R3-MYB
transcription factor (coded by VvMYB5b) was over expressed in
tomato, there were color pigmentation changes and morphological
variations, such as dwarfism, modified leaf structure, flower shape,
and fruit texture. VvMYB5b was highly expressed in the skin tissue of
the fruit after the fruit had begun to change color [20] and the fruit
color change strongly enhanced anthocyanin accumulation. However,
in this study, RsMYB1 cDNA, which is strongly expressed in the skin
and flesh of radish and leads to anthocyanin accumulation, produced
no phenotypic changes when expressed in chrysanthemum.

Transcription factors increase the amount of anthocyanins in many
plant species. MYC and MYB transcription factors regulate the
expression of biosynthetic genes in maize. Similar transcription
factors in snapdragon and petunia also regulate the expression of
biosynthetic genes [33,34]. Ectopic expression of Del encoding
MYC transcription factor from snapdragon in tobacco has led to
increased anthocyanin accumulation when driven by the CaMV
35S promoter [26]. The MYC (Lc) transcription factor gene from
maize, controlled by the same CaMV 35S promoter, changed
flower color from pink to intense red in tobacco, and enhanced
anthocyanin production in all vegetative tissues in tomato [35],
and in both vegetative and floral tissues of petunia [36]. However,
some transgenic plants, such as chrysanthemum, rose, and
carnation, wherein maize Lc had been introduced, did not show a
significant increase or decrease in anthocyanin accumulation [37,
38]. Likewise, MYB transcription factor modified the color of
white flowers of Petunia axillaris and purple flowers of Petunia
integrifolia [39]. However, it showed different pigmentation
control activities in different species of Antirrhinum and Petunia
[39], and had different pigmentation effects on berry skin color in
grape [40,41] and on tuber color in potato [28]. There seems to be
some variation in the ability of transcription factor activity to
control anthocyanin production under ectopic conditions.



Fig. 4.RT-PCR analysis of the expression patterns of biosynthetic genes in the leaf and at the two different flower stages for the non-transgenic (control, cont) and the three transgenic lines
(S1, S2, and, S3) containing RsMYB1. L: leaf. F1: early flowering stage, and F2: fully flowering stage.
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In this study, three transgenic chrysanthemum plants expressing
radish RsMYB1 cDNA, which was driven by CaMV 35S and the petal
specific promoter, InMYB1, were obtained. Interestingly, no
pigmentation was detected in either vegetative or floral organs.
The RT-PCR results show that the RsMYB1 cDNA fragment could
activate expression of the three anthocyanin biosynthetic genes,
CmF3H, CmDFR, and CmANS, which are responsible for anthocyanin
biosynthesis, and that the expression levels of CmF3H and CmANSm
were generally higher in floral tissue than in leaves. This might be
attributed to the activity of the InMYB1 promoter. In contrast,
CmDFR was stably expressed in all tested parts of the transgenic
plants. As RsMYB1 was able to change color pigmentation in
petunia according to our preliminary experiment (data not
shown), the gene construct was used for chrysanthemum
transformation. Even though RsMYB1 could regulate the three key
Fig. 5. Comparative analysis of anthocyanin content between the non-transgenic (control) and
and F2: fully flowering stage.
biosynthetic genes involved in the anthocyanin biosynthetic pathway
in chrysanthemum, the reason why anthocyanin expression was not
observed in any of the chrysanthemum transgenic lines is not clear.
One possible explanation is that ‘Shinma’ does not have an
anthocyanin biosynthetic pathway, even though in vitro plantlets
of ‘Shinma’ showed occasional anthocyanin pigmentation in their
axial parts (data not shown). Alternatively, the anthocyanin
biosynthetic pathway may contain a different set of structure
genes. These contradictory results need to be resolved by future
studies on chrysanthemum transgenic lines.
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Fig. 6. Spectrophotometric analysis of anthocyanin content between the non-transgenic (control) and the RsMYB1-transformed cv. ‘Shinma’ lines S1, S2, and S3. L: leaf. F1: early flowering
stage, and F2: fully flowering stage.
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