Research article

Synthesis, characterization, and in vitro evaluation of gamma radiation-induced PEGylated isoniazid

Maykel González-Torres a,b,1, Silvia Guzmán-Beltrán c,1, Marco A. Mata-Gómez b,d,*, José González-Valdez d, Gerardo Leyva-Gómez e, Yzaizel Melgarejo-Ramírez a, Witold Brostow f, Cristina Velasquillo a,s, Joaquín Zúñiga-Ramos c, Rogelio Rodríguez-Talavera g

a Conacyt-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación “Luís Guillermo Ibarraguirre”, Ciudad de México 14389, Mexico
b Tecnológico de Monterrey, School of Engineering and Science, Ave. Atlacatl 5718, Puebla, Pue, 72453, Mexico
c Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
d Tecnológico de Monterrey, School of Engineering and Science, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
e Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
f Departamento de Materiales Science and Engineering, University of North Texas, 3940, Denton, TX 76207, USA
g Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de Mexico, 76230, Mexico

ARTICLE INFO

Article history:
Received 1 June 2019
Accepted 30 July 2019
Available online 6 August 2019

Keywords:
Antituberculotic
Asparaginase
Humans
Isoniazid
Mycobacterium tuberculosis
Poly(ethylene glycol)
Polymers
Prodrug
Raman
Tuberculosis
UV/Vis

ABSTRACT

Background: The search for innovative anti-tubercular agents has received increasing attention in tuberculosis chemotherapy because Mycobacterium tuberculosis infection has steadily increased over the years. This underlines the necessity for new methods of preparation for polymer–drug adducts to treat this important infectious disease. The use of poly(ethylene glycol)(PEG) is an alternative producing anti-tubercular derivatives. However, it is not yet known whether PEGylated isonicotinylhydrazide conjugates obtained by direct links with PEG are useful for therapeutic applications.

Results: Here, we synthesized a PEGylated isoniazid (PEG-g-INH or PEG–INH) by gamma radiation-induced polymerization, for the first time. The new prodrugs were characterized using Raman and UV/Vis spectrometry. The mechanism of PEGylated INH synthesis was proposed. The in vitro evaluation of a PEGylated isonicotinylhydrazide macromolecular prodrug was also carried out. The results indicated that PEG–INH inhibited the bacterial growth above 95% as compared with INH, which showed a lower value (80%) at a concentration of 0.25 μM. Similar trends are observed for 0.1, 1, and 5 μM.

Conclusions: In summary, the research suggests that it is possible to covalently attach the PEG onto INH by the proposed method and to obtain a slow-acting isoniazid derivative with little toxicity in vitro and higher antimycobacterial potency than the neat drug.


© 2019 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Tuberculosis (TB) is a pandemic disease caused by the bacillus Mycobacterium tuberculosis (MTB) [1]. This airborne disease is in the top ten causes of death according to the World Health Organization (WHO) [2]. Despite millions of people being diagnosed and treated yearly for TB, there are still obstacles to overcome regarding treatment and resistance [3]. In 2018, the WHO published a report showing several drugs that are currently going through Phase I, II, or III trials [4]. However, the contemporaneous trends are highly arduous due to the long-time of chemotherapy necessary to eradicate this communicable infectious disease [5].

The emergence of multidrug resistance (MDR) strains has also shown that there is a need to continue working on tuberculosis drug-development [3]. The term extensively drug-resistant (XDR) tuberculosis demonstrates that this disease has no boundaries in the increasing resistance to new pharmaceuticals [6].
Among the tuberculostatic agents, the antibiotic isoniazid, also known as isonicotinylhydrazide (INH) is considered the core or first-line drug for the treatment (chemotherapy) of active TB disease [7]. The INH activity against TB is remarkable [8]; it has to be noted, however, that isoniazid can cause liver injury (hepatotoxicity) [9], and exhibit adverse effects such as peripheral neuropathy [10]. Isoniazid must be administered for long periods along with other drugs, for instance, pyrazinamide, rifampicin, and either ethambutol or streptomycin [11]. It is, therefore, necessary to chemically modify or combine the INH with other polymeric substrates to reduce the toxicity and/or increase drug activity, without further mandatory association with other tuberculosis medications [12].

To face this challenge, multiple derivatives of isoniazid have emerged in recent years, to mention a few examples, isoniazid by-products possessing 4-thiazolidinone and 2-azetidinone moieties [13], isonicotinoyl hydrazones [8], isonicotinoyl hydrazides [14], and N-alkyl-5-(pyridin-4-yl)-1,3,4-oxadiazole-2-aminos [15]. On the other hand, the PEGylation of pharmaceuticals is an attractive alternative to produce prodrugs [16,17]. It is a technique that involves the grafting of poly(ethylene glycol) (PEG) onto target molecules and increases their efficiency and stability. Early studies were focused on the use of PEG for the fabrication of flexible poly(lactic acid)/poly(ethylene glycol)-functionalized polyhedral oligomeric silsesquixane (PLA-PEG-POSS) nanocomposites [18], polyvinyl alcohol/poly(ethylene glycol) (PVA/PEG) hydrogels [19], and (acrylic acid/ PEG)-zinc oxide mucoadhesive using gamma-ray irradiation [20]. It would appear, therefore, that radiation-induced PEGylation could be an alternative to design new drugs mitigating TB. So, far, there is a tendency to PEGylate macromolecules such as proteins to generate so-called PEG–protein conjugates [21], but the PEGylation of non-proteic molecules such as small pharmaceuticals remains under development [17].

Previously, several works have been carried out that involves the use of PEG in the preparation of INH derivatives, such as the copolymer PEG-poly(aspartic acid) produg with isoniazid [22], the conjugate of INH with methoxypoly(ethylene glycol)-b-poly(l-lysine) [23], the complex Cu–PEG–succrose–INH [24], and various anti-tuberculosis macromolecular prodrugs based on INH conjugates with PEG derivatives [25]. The use of chelating agents to formate PEG–bis(INH) conjugates [26] for infection diagnosis, and therapy [27] has also been reported. In this scenario, gamma-radiation-induced polymerization is a technique — based on the generation of free radicals — that allows the direct production via PEGylation of small molecules with no need for catalysts or initiators, which results in biocompatible polymer carriers of high purity [28]. In this work, we report the synthesis of PEGylated isoniazid by the simultaneous irradiation method. Gamma-radiation-induced PEGylated INH (PEG–INH) or PEG–INH, the first of its kind to our knowledge, was structurally characterized by Raman spectroscopy and ultraviolet–visible spectrophotometry (UV–vis). It is also shown a proposal for the radiation-induced PEGylation mechanism of INH. Further in vitro evaluations of anti-mycobacterial activity and cell viability of the PEGylated derivatives were performed.

2. Materials and methods

Isonicotinylhydrazide (Synonym: 4-Pyridinecarboxylic acid hydrazide, Isonicotinic acid hydrazide, Isonicotinic hydrazide, INH) was purchased from Merck (MDL #: MFCD00006426, St Louis, MO, USA) analytical standard, ≥99% (TLC) (Supelco). Double-distilled water was employed to prepare solutions of 12.5 mg/ml with PEG of 400, 1000, 3500, and 4000 Da, namely G1, G2, G3, and G4, respectively. All PEG was acquired from Sigma-Aldrich. Pyrex glass tubes, which contained roughly 1.25 g of INH and 2 ml of the previously mentioned PEG solutions (G1-G4) were subjected to a 60Co-γ-irradiation in the air (Gamma Beam 651 PT, Nordion International) source. The simultaneous irradiation method was utilized. It involves the direct exposure of INH and PEG solution to the high-energy of radiation, at a dose rate of roughly 1.5 Kgy/h and doses of 5, 10, 15, 20 and 25 kGy, hereafter named: D1, D2, D3, D4, and D5 accordingly. The dose rate was determined with a Fricke dosimeter. The PEG/INH solutions were degassed by 20 min of freezing in liquid nitrogen and the subsequent 3 h of thawing until three freeze–thaw cycles were completed. The test samples were labeled as M2G1D1, M2G1D2, M2G1D3, M2G1D4, M2G1D5, M2G2D5, M2G3D5, and M2G4D5, where M2 is assigned to INH (to simplify the names in the figures), while G and D represent variations in the molecular weight of PEG and the doses, respectively. For instance, M2G2D1 stands for PEGylated isoniazid with PEG of 1000 Da at 5 kGy. In addition, increasing concentrations of the sample M2G1D5 were set up to evaluate possible changes in the absorbance or wavelength in spectrophotometry. The samples stated to be 14 mg/ml (P1), 28 mg/ml (P2), 44 mg/ml (P3), 59 mg/ml (P4), 63 mg/ml (P5), 79 mg/ml (P6), 83 mg/ml (P7), and 100 mg/ml (P8) of PEGylated INH were labeled as M2G1D5P1, M2G1D5P2, M2G1D5P3, M2G1D5P4, M2G1D5P5, M2G1D5P6, M2G1D5P7 and M2G1D5P8 respectively. The samples were prepared in triplicate to ensure the accuracy of the experiments. Table 1 explains what the labels mean.

The Raman spectroscopy of INH, PEG, and PEGylated isoniazid was accomplished at ambient temperature in a micro-Raman spectrometer (Bruker Senterra, model 910, MA, USA) equipped with a 785-nm laser light source. A drop of the sample was placed on a flat and clean brass plate. This procedure is intended to avoid any interference enclosed by the support and the polymers solution signals.

The UV/Vis (150–650 nm) spectra of isoniazid (M2) and all PEGylated INH samples was measured using a microplate spectrophotometer reader (Multiskan GO, Thermo Fisher Scientific Inc., Waltham, MA, USA). Multimode wavelength scan at room temperature and with linear shaker was used.

*M2 stands for INH, for instance M2G1D1 is equivalent to INH-G1-D1. The concentration of PEG–INH (mg/ml) indicate the increasing concentration of M2G1D5 (INH-PEG (400 Da)-D5 (25 kGy)).
Cytotoxic testing was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium (MTT, Sigma-Aldrich) reduction assay to determine the number of viable THP1 cells in culture [30]. The human acute monocytic leukemia cell line THP1 was acquired from the American Type Culture Collection (TIB202, ATCC). THP1 cells were grown in RPMI-1640 medium supplemented with 2 mM l-glutamine, 10 mM HEPES buffer, 1 mM sodium pyruvate (Lonza, CA, USA), and 10% heat-inactivated fetal bovine serum (HycloneTM, Logan, USA), and 50-μM β-2-mercaptoethanol (Bio-Rad Laboratories, Berkeley, CA, USA). The cells were seeded in 48-well plates containing culture medium described above for 36 h at a temperature of 27°C until a density of 0.3 × 10⁶ cells/well. THP-1 cells were differentiated into macrophage by exposing them to a 50-nM phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich) solution for 3 d, as previously described [31].

The PEG–INH (339 to 5420 μg/ml) was added to the wells containing cells. Plates were incubated in an oven at 37°C under a 5% CO₂ atmosphere for 24 h, and the cell viability was quantified. After this, the plate was centrifuged to eliminate the treatment, and immediately red phenol free RPMI fresh medium and 30-μl MTT (5 mg/ml) were added, and plates were incubated for 2 h more. Absorbance at 570 nm was read on an HT Multi-Mode Microplate Reader (Biotek, WA, USA).

3. Results and discussion

Fig. 1 shows the Raman spectrum of pure solid and dried isoniazid (Fig. 1a), aqueous polyethylene glycol (400 Da) (Fig. 1b), PEGylated isoniazid (Fig. 1c), and the effect of different doses on the synthesis of PEGylated isoniazid (Fig. 1d) [32]. As can be seen, the bands at 3307, 3115, and 3059 cm⁻¹ belong to amine stretching vibration (ν(N–H)), and two signals of C–H asymmetric stretching (ν(C–H)) respectively (Fig. 1a). Moreover, the PEGylated drug (M2G1D1) showed a broad band within the range of 3000–3500 cm⁻¹, which is associated with the reaction of PEG with a primary or secondary amine group of isoniazid (Fig. 1c). Rather than a band at 1674 cm⁻¹, identified as carbonyl stretching of neat INH (ν(C=O), Fig. 1a), a small and weak band at 1667 cm⁻¹ is observed which suggests the formation of amide groups (R₁CONR₂) (Fig. 1c) [33].

The comparison of the two spectra (M2/M2G1D1; Fig. 1a and c) showed a slight variation in the signals attributed to the heterocyclic structure, namely, ring C=C asymmetric stretching (1611 cm⁻¹), C–N stretching (~1337 cm⁻¹), H–N–H bending (1551 cm⁻¹), ring C–C–H asymmetric bending (~1192 cm⁻¹), and ring C–N–C asymmetric bending (~887 cm⁻¹). This result revealed that the aromatic ring was not affected in the radiochemical reaction. In addition, the overlapping of the band originally found at 1131 cm⁻¹ (N–X stretching, X=NH₂ group) exhibited a possible reaction with PEG by primary amine [34].

The disappearance of the isoniazid C–C–H symmetric bending at 849 cm⁻¹ with regard to the final product represent a probable distortion caused by PEGylation. Furthermore, the Raman of PEG was previously discussed (Fig. 1b) [28]. It was noted that the M2G1D1 spectrum does not contain PEG signals, which implies that both
molecules have reacted completely. The disappearance of the major part of the isoniazid fingerprint (100–600 cm⁻¹) is also observed, except for the band at 351 cm⁻¹. Finally, the spectra of PEGylated isoniazid obtained at increasing dose points towards no apparent differences between each other (Fig. 1d). The results support the successful synthesis of PEGylated isonicotinylhydrazide [35].

Fig. 2 shows the UV–visible spectra of (a) isoniazid and PEG-g-INH, (b) samples with different doses of gamma radiation, (c) increasing molecular weights of poly(ethylene glycol) in the graft reaction, and (d) increasing concentrations of M2G1D5. The isoniazid displays an ultraviolet maximum at roughly 263 nm [36]. The emergence of a new peak at 358 nm was ascribed to the synthesized PEGylated drug (Fig. 2a). It is believed that this weak absorbance is attributed to the additional transitions between non-bonding orbitals and π* orbitals of a carbonyl group formed as a consequence of grafting of PEG onto the isonicotinylhydrazide. Therefore, it makes sense to have the same trend for increasing gamma radiation doses and PEG molecular weights (Fig. 2b and c). In Fig. 2d, it also can be seen that there is a clear dependency between absorbance and PEG–INH concentration. Since there is no variation in pH (7.4), it is concluded that concentrations over 28 mg/ml (P2) are needed to exhibit steady signals at 358 nm, as evidence of successful synthesis of gamma-radiation-induced direct PEGylation of isoniazid.

Fig. 3 shows the proposed mechanism of PEGylated isoniazid by the simultaneous irradiation method. First, in the initiation step, the radicals of PEG and INH are formed. To simplify the mechanism, the radiolysis of water was omitted. On the one hand, PEG macroradical contains a carbonyl radical at the end of the molecule, while on the other side the drug has two alternatives, the radicals over the primary or secondary amine. Second, the INH radical react by radical coupling with PEG macroradicals to yield PEG-g-INH prodrug. From Raman results, it is suggested that PEGylation is more likely to occur by primary amine.

First, we evaluated the effect of the conjugate PEG–INH (M2G1D1) on M. tuberculosis H37Ra growth and determined that this new compound caused a dose-dependent decrease in bacterial growth at doses from 0.1 to 5.0 μg/ml when the bacterium was cultured in liquid medium (Fig. 4). The bactericidal effect of PEGylated INH increased significantly with respect to INH by itself. Interestingly, the conjugate INH–PEG inhibited the bacterial growth above 95% at a concentration of 0.1 μg/ml (0.25 μM) and more than 99% when the concentration was increased ten times. All synthesized products exhibited the same trend.

The increased bactericidal effect exhibited by the INH–PEG could be due to the conferred partial hydrophilicity by the PEG molecule grafted on it. This property could contribute to stability in the culture medium avoid its degradation in the aqueous medium. In fact, PEG chains
confer more solubility because it can form a large number of H-bonds with water and increase the INH solubility and avoid the possible aggregation. These skills could enhance its bactericidal activity [37,38]. Despite the limitations of this work, we were able to demonstrate that INH-PEGylated maintains its bactericidal activity. However, it is important to show that this activity is maintained in the infection context.

It is known that isoniazid can be susceptible to enzyme hydrolysis. However, PEG chains might protect isoniazid from the action of N-arylaminoacyltransferases [14]. It has been recently demonstrated that the PEG attached to an l-asparaginase protects it from the hydrolysis by two serum proteases. After 84 h of contact with the proteases, the PEGylated l-asparaginase maintains its biological activity [39]. It is worth mentioning that the choice of H37Ra instead of using H37Rv is justified by the report of a similar response to anti-TB agents [40].

Regarding to in vitro cytotoxicity, none of the tested concentrations of PEG–INH significantly decreased THP-1 cell viability after exposing the cells to the new drug for 24 h. Similar behavior was observed with the

![Fig. 3. Proposed mechanism of gamma radiation-induced PEGylated isoniazid.](image)

![Fig. 4. Effect of PEGylated isoniazid on bacterial growth. Bacteria were cultivated in 7H9 Middlebrook medium supplemented with INH or PEG-INH for 7 d. After incubation, CFUs were quantified by counting the number of surviving bacteria for each concentration of compounds. Deviation and the statistical analyses were conducted using one-way analysis of variance (ANOVA) p values < 0.05 were considered as statistically significant. Data represent the mean ± SE (n = 4). *p < 0.05 compared to the culture with INH alone. PEG–INH concentration in μg/ml refers to INH equivalents.)](image)
The most likely reaction is the grafting of PEG onto the structurally characterized by Raman and Ultraviolet–Visible spectrophotometry. The evidence obtained by spectroscopy suggests that PEGylation of the tuberculostatic agent was successfully achieved.

It is important to mention that PEG might reduce, in some cases, the target activity alleged by the ability to overcome the impermeability of MTB. However, these drug–polymer conjugates are usually limited by the low loading of poly(ethylene glycol). We have attempted to address this knowledge gap by directly linking PEG to the neat drug. The most important PEG–INH advantages would be the increase of biological activity alleged by the ability to overcome the impermeability of MTB and the future increase of oral bioavailability.

4. Conclusions

Gamma-radiation induced PEGylated isoniazid was synthesized by the simultaneous irradiation method. The PEG–INH conjugate was structurally characterized by Raman and Ultraviolet–Visible spectrophotometry. The evidence obtained by spectroscopy suggests that PEGylation of the tuberculostatic agent was successfully achieved. The most likely reaction is the grafting of PEG onto the isonicotinylhydrazide primary amine group. The advantage of direct covalent bonding of poly(ethylene glycol) onto the isoniazid is the high loading of the polymer and the easy and pure synthesis of a prodrug.

On biological in vitro evaluations, the PEGylated isoniazid showed greater anti-mycobacterial activity than unmodified INH. The bacterial growth was inhibited above 95% at a concentration of 0.25 μM. A clear additional advantage of PEGylation is the increase in bioavailability of the isonicotinylhydrazide. The toxicity of both pharmaceuticals is similar. The THP-1 cell viability was not meaningfully decreased by both drugs, thus evidencing the significant clinical potential of the novel derivative.

Further research will include evaluation of this innovative prodrug agent against other M. tuberculosis strains and in vivo studies, including evaluation of INH-PEG uptake by lung macrophages. However, the new conjugate can be considered as a promising anti-tuberculosis agent as it showed high anti-mycobacterial potency and low cytotoxicity.

Conflict of interest

The authors of this manuscript declare no conflict of interests.

Financial support

This work was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) [grant number 0376, 2019]; Cátedras de Conacyt, Ciudad de México, México. Special thanks to the School of Engineering and Science of Tecnologico de Monterrey for the financial support provided [grant number 002020918].

Acknowledgments

We acknowledge Carolina Muñoz, Miriam Guadalupe Bojorge, Susana Vargas Muñoz, and Manuel Miranda for their help with Raman and UV/Vis measurements.

References


