Cloning and expression analysis of three critical triterpenoid pathway genes in *Osmanthus fragrans*

Xiulian Yang, Wenjie Ding, Yuanzheng Yue, Chen Xu, Xi Wang, Lianggui Wang *

Abstract

Background: *Osmanthus fragrans* is an important ornamental tree and has been widely planted in China because of its pleasant aroma, which is mainly due to terpenes. The monoterpenoid and sesquiterpenoid metabolic pathways of sweet osmanthus have been well studied. However, these studies were mainly focused on volatile small molecule compounds. The molecular regulation mechanism of synthesis of large molecule compounds (triterpenoids) remains unclear. Squalene synthase (SQS), squalene epoxidase (SQE), and beta-amyrin synthase (BETA-AS) are three critical enzymes of the triterpenoid biosynthesis pathway.

Results: In this study, the full-length cDNA and gDNA sequences of OfSQS, OfSQE, and OfBETA-AS were isolated from sweet osmanthus. Phylogenetic analysis suggested that OfSQS and OfSQE had the closest relationship with Sesamum indicum, and OfBETA-AS sequence shared the highest similarity of 99% with that of Olea europaea. The qRT-PCR analysis revealed that the three genes were highly expressed in flowers, especially OfSQE and OfBETA-AS, which were predominantly expressed in the flowers of both "Boyce" and "Rixiang" cultivars, suggesting that they might play important roles in the accumulation of triterpenoids in flowers of *O. fragrans*. Furthermore, the expression of OfBETA-AS in the two cultivars was significantly different during all the five flowering stages; this suggested that OfBETA-AS may be the critical gene for the differences in the accumulation of triterpenoids.

Conclusion: The evidence indicates that OfBETA-AS could be the key gene in the triterpenoid synthesis pathway, and it could also be used as a critical gene resource in the synthesis of essential oils by using bioengineered bacteria.

© 2018 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

doi:10.1016/j.ejbt.2018.08.007

1. Introduction

Osmanthus fragrans, commonly known as sweet osmanthus, is an evergreen shrub or small tree belonging to Oleaceae [1]. It is distributed in China and other Asian countries, such as South Korea, India, and Thailand [2,3,4]. Presently, it has been widely cultivated as an urban ornamental tree in China [2]. Its fresh flowers have a pleasant fruity and sweet aroma. The extracts from *O. fragrans* flowers are also important sources of fragrance in the perfume and cosmetic industries [5,6]; the extracts can also be used to reduce inflammation, resist oxidation, and prevent aging [7].

As a group of secondary metabolites, triterpenoids are synthesized by the mevalonate pathway (MVA pathway) and 2-Cmethyl-D-erythritol-4-phosphate pathway (MEP pathway) [8]. Although these pathways have been studied in some plants, the downstream genes of the MEP pathway remain unclear, especially those related to the synthesis of triterpenoids. Squalene synthase (SQS, EC 2.5.1.21), which catalyzes the first enzymatic step that shifts carbon pool away from the central isoprenoid pathway toward the biosynthesis of terpenes, could determine the yield of subsequent products such as triterpenes, sterols, and cholesterol [9]. It has been reported that SQS genes play an important role in regulating the biosynthetic pathway of triterpenes, and the overexpression of SQS genes in *Panax ginseng* leads to enhanced accumulation of triterpenes [10]. This regulation increases the mRNA accumulation of downstream genes such as squalene epoxidase (SQE, EC 1.14.99.7) and increases the production of phytosterols and triterpenes [11]. Squalene epoxidase, a downstream gene of SQS, catalyzes the formation of 2,3-oxidosqualene [12]. The precursor 2,3-oxidosqualene is catalyzed by beta-amyrin synthase (BETA-AS, EC 5.4.99.39) and cycloartenol synthase (CAS) to produce beta-amyrin and cycloartenol, respectively, which are further modified to form triterpenoid and phytosterol, respectively (Fig. 1) [13]. BETA-AS
was defined as an important branch point along the metabolic pathway of triterpenoids, and it plays a regulatory role in the biosynthesis of triterpenoids [14].

Triterpenoids isolated from *O. fragrans* showed hypolipidemic and antioxidative activity [15]. However, the process of biosynthesis of these compounds is unclear, and the molecular mechanism of synthesis of triterpenoids in sweet osmanthus remains to be clarified. In the present study, the full-length cDNA and gDNA sequences of these genes, namely *OfSQS*, *OfSQE*, and *OfBETA-AS*, were successfully isolated and further identified. Then, the expression patterns of the three genes in the different flower development stages of two *Osmanthus* cultivars were analyzed by qRT-PCR.

2. Materials and methods

2.1. Plant materials

Two cultivars of *O. fragrans*, “Boye Jingui” (with strong aroma) and “Rixiang Gui” (with light aroma) have been grown under natural conditions since 2005 in the campus of Nanjing Forestry University, Jiangsu Province, China (112.32'E, 156.32'W). The flowers of “Rixiang Gui” at the full blooming stage (S4) collected in 2015 were used for gene cloning. Different organs, including root, stem, leaf, and flower at the full blooming stage were collected in October 2016 for tissue-specific expression study. From September to October 2016, flowers were harvested during five flowering stages including bud-pedicel stage (S1), bud-eye stage (S2), primary blooming stage (S3), full blooming stage (S4), and flower fading stage (S5), respectively. Samples were immediately frozen in liquid nitrogen and stored at -80°C for subsequent use.

2.2. RNA extraction and first-strand cDNA synthesis

Total RNA was extracted using the RNAprep pure Kit (Tiangen, China) following the manufacturer’s instructions. The quality of the extracted RNA was determined by NanoDrop 2000 Spectrophotometer (Thermo Scientific, USA), and RNA integrity was evaluated by agarose gel electrophoresis. Then, the first strand cDNA was synthesized with the Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific) according to the manufacturer’s protocol.

2.3. Cloning of full-length cDNAs

According to the EST (expressed sequence tags) sequences of the *O. fragrans* transcriptomic databases, specific primers (Table S1) were designed to obtain the core sequences of *OfSQS*, *OfSQE*, and *OfBETA-AS*. Next, by using the 3′-Full RACE Core Set with PrimeScript™ RTase (Takara Biotechnology) and SMARTer™ RACE cDNA Amplification Kit (Clontech, USA), full-length sequences of these three genes were obtained. The specific primers for 3′ RACE and 5′ RACE (Table S2) were designed using Oligo 6.0 software. Finally, the PCR products of these three genes were purified and cloned into pEASY®-T1 vector (Transgen Biotech, China) to confirm by sequencing.

2.4. Isolation of genomic DNA sequences of *OfSQS*, *OfSQE*, and *OfBETA-AS* genes

The genomic DNA was extracted using the Plant Genomic DNA Kit (Tiangen, China) following the manufacturer’s instructions. The genomic DNA extracted from “Rixiang Gui” petals was used as a template to obtain the genomic DNA sequences of *OfSQS*, *OfSQE*, and *OfBETA-AS* genes with the specific primers (Table S3). After PCR amplifications, the purified products were directly sequenced by Genescript Inc. (Genescript, China).

2.5. Bioinformatics analysis

Open reading frame and protein prediction were made by NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/orf/orf.html). Nucleotide sequences were identified using the NCBI Blast program (http://www.ncbi.nlm.nih.gov/BLAST/). Physical and chemical parameters of proteins were determined by the ProtParam tool (http://web.expasy.org/protparam). The conservative domain was predicted by the PFAM tool (http://smart.embl-heidelberg.de/). The signal peptide was predicted by SignalP 3.0 Server (http://www.cbs.dtu.dk/services/SignalP/). Transmembrane topology prediction was made by TMHMM Server version 2.0 Server (http://www.cbs.dtu.dk/services/TMHMM/). The structure of genomic organization was established by Gene Structure Display Server (http://gsds.cbi.pku.edu.cn/). The homology analysis was conducted using BLAST of GenBank (http://www.ncbi.nlm.nih.gov/BLAST/). Finally, the phylogenetic trees were constructed by ClustalX 2.1 and MEGA 5.0 with 1000 bootstraps.

2.6. Gene expression analysis

Quantitative real-time RT-PCR (qRT-PCR) was performed using ABI StepOnePlus Systems (Applied Biosystems, USA) with SYBR Premix Ex Taq (Takara Biotechnology). The RNA samples were quantified by NanoDrop 2000 Spectrophotometer. cDNA was synthesized from 5 μg total RNA and diluted 10-fold for the gene expression experiment. *OfRAN* and *OfRPB2* were considered as the reference genes for different organs and different flowering stages, respectively [16]. The specific primers used in the experiment to detect the gene expression levels were designed by Primer Premier 5.0 software (Table S4). The thermal cycle conditions used were as follows: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s, 60°C for 30 s, 95°C for 15 s, and 95°C for 15 s [17]. The relative expression levels were calculated by the 2^-△△CT method. Data were presented as mean values with error bars indicating standard error. Different letters indicate significant differences at the 0.01 level according to Tukey’s test.

2.7. Subcellular localization assay

The coding region (without stop codon) of *OfBETA-AS* was amplified from cDNA template of “Rixiang Gui” petals with gene-specific primers (Table S5). Vector (35s::GFP-OfBETA-AS) constructed by subcloning the coding region of *OfBETA-AS* into the Super1300::GFP vector (provided by Dr. Yuanzheng Yue) was used for the subcellular localization assay.
The 35s::GFP-OfBETA-AS and Super1300::GFP control vector were electroporated into Agrobacterium tumefaciens strain EHA105 by using Eppendorf Eporator®4309 (Eppendorf, Germany). Then, the tobacco (Nicotiana benthamiana) leaves were infiltrated by the vector-containing Agrobacterium. After 2 d of incubation at 21°C and 14 h photoperiod, the infiltrated plants were used to observe the GFP fluorescence signal on a laser scanning confocal microscope Zeiss LSM 710 (Zeiss, Germany).

3. Results

3.1. Cloning and sequence analysis of cDNAs

To achieve the full-length cDNAs of OfSQS, OfSQE, and OfBETA-AS, the RACE technology was used to obtain the 3′ region and 5′ region of these genes. The full-length sequence of SQS cDNA was 1672 bp and contained an open reading frame (ORF) of 1245 bp encoding a protein with 414 amino acids, a 5′-untranslated region (5′-UTR) of 90 bp, and a 3′-UTR of 337 bp. The cDNA of SQE was 1841 bp with an ORF of 957 bp encoding a protein with 318 amino acids, a 5′-UTR of 494 bp, and a 3′-UTR of 390 bp. The cDNA of BETA-AS was 2737 bp with an ORF of 2289 bp encoding a protein with 762 amino acids, a 5′-UTR of 185 bp, and a 3′-UTR of 263 bp. The sequences of OfSQS, OfSQE, and OfBETA-AS have been submitted to GenBank with the accession numbers of KY992860, KY992861, and KY992862, respectively.

The theoretical isoelectric points (pI) of OfSQS, OfSQE, and OfBETA-AS were 7.57, 9.01, and 5.97, respectively, and the putative molecular weights of these genes were 47.67, 34.51, and 87.21 kDa, respectively. The instability index showed that OfSQS, OfSQE, and OfBETA-AS belonged to the group of unstable proteins. In amino acid sequences of the three genes, no signal peptide sequence was identified. Transmembrane region analysis of the amino acid sequence indicated that the presence of strong transmembrane helices from 281 to 303 aa and 387 to 409 aa in OfSQS, 251 to 270 aa and 277 to 299 aa in OfSQE, and 609 to 631 aa in OfBETA-AS. The conserved domains of OfSQS and OfSQE proteins were from 44 to 316 aa and 4 to 277 aa, respectively, and for the OfBETA-AS protein, the conserved domains were from 100 to 406 and 415 to 754 aa. These conserved domains evidenced that these genes could be categorized as a member of the SQS family, SQE family, and SQHop cyclase C and SQHop cyclase N superfamily (Fig. 2a), respectively. Alignment result revealed that 6 conservative domains, namely I (58–76), II (77–90), III (166–188), IV (206–224), V (310–324), and VI (391–417), were found in OfSQS. The putative flavin adenine dinucleotide (FAD) binding domain was found in the amino acid sequence of OfSQE. Motif analysis revealed that OfBETA-AS contained the four QW motifs (485–489), and the MWYCR (256–262) motif among the highly conserved regions.

3.2. Cloning and sequence analysis of genomic DNA

To analyze the exons/introns of the three genes, genomic sequences of OfSQS, OfSQE, and OfBETA-AS were obtained by PCR amplification with genomic DNA. Sequence analysis indicated that the sizes of OfSQS, OfSQE, and OfBETA-AS genomic DNA were 7496 bp, 1950 bp, and 5606 bp, respectively. By homologous alignment of the cDNA and genomic DNA sequences, the genomic organizations of the three genes were elucidated and positions of introns/exons were determined. Our results showed that OfSQS, OfSQE, and OfBETA-AS consisted of 12, 4, and 17 introns, respectively (Fig. 2b). All these identified introns began

![Fig. 2. Structure of OfSQS, OfSQE, and OfBETA-AS. (a) Conserved domains of OfSQS, OfSQE, and OfBETA-AS. The conserved domain analysis of the three proteins was performed using the Pfam Conserved Domain Database. The result indicated that OfSQS, OfSQE, and OfBETA-AS were categorized as a member of SQS family, SQE family, and SQHop cyclase C and SQHop cyclase N superfamily, respectively. (b) Genomic organization of the OfSQS, OfSQE, and OfBETA-AS genes. Exons are represented as yellow lines, introns as fine lines, and UTRs as blue lines. The structure of genomic organization was determined using Gene Structure Display Server.](image)
Fig. 3. Phylogenetic trees of OfSQS, OfSQE, and OfBETA-AS from O. fragrans and other plants using the deduced amino acids. Phylogenetic trees were constructed by ClustalX 2.1 and MEGA 5.0 with the 1000 bootstrap method. (a) Phylogenetic tree of OfSQS with other plants such as S. indicum (XP_011092839.1), B. monnieri (ADX01171.1), C. oleifera (AGB05603.1), S. miltiorrhiza (ACR57219.1), Diospyros kaki (ACN69082.1), E. tirucalli (BAH23428.1), Solanum lycopersicum (NP_001234716.1), Panax japonicus (ALB38664.1), Glycine max (NP_001236365.1), Astragalus membranaceus (ADW73251.1), Beta vulgaris (XP_015885090.1), Z. jujuba (XP_015885090.1), Citrus sinensis (NP_001234604.1), and A. thaliana (AtSQS1-AT4G34640.1; AtSQS2-AT4G34650.1); (b) Phylogenetic tree of OfSQE with other plants such as Z. jujuba (XP_015885090.1), C. melo (XP_016901349.1), C. sativus (XP_004141303.1), Glycine soja (KHN17192.1), P. mume (XP_008220536.1), Citrus sinensis (XP_006466420.1), Panax vietnamensis var. fuscidiscus (AKR23028.1), Cephalotus follicularis (GAV57995.1), Theobroma cacao (XP_007047610.2), Cossypium arboreum (KHG06672.1), Citrus sinensis (KDO78555.1), Jatropha curcas (NP_001239565.1), and A. thaliana (AtSQE1-AT2G22830.1; AtSQE2-AT4G37760.1; AtSQE3-AT1G58440.1); (c) Phylogenetic tree of OfBETA-AS with other plants such as O. europaea (BAH23428.1), S. indicum (XP_011096562.1), Coffea canephora (CDP12624.1), D. hygrometricum (KZV51042.1), C. roseus (ADW73251.1), Ocimum basilicum (AFH35506.1), Colotropis procera (AND78515.1), Artemisia annua (AHF22084.1), flex asperlla var. Asprella (AIS97993.1), Bacopa monnieri (ABM86392.1), Centella asiatica (AAS01523.1), Erythranthe gutata (XP_012842229.1), Dauscus carota subsp. sativus (XP_017230789.1), Nelumbo nucifera (XP_010245756.1), Maesa lanceolata (AHF48822.1), Vitis vinifera (XP_002270051.2), Solanum lycopersicum (NP_001234604.1), Bupleurum chinense (ABY90140.1), Eucalyptus grandis (XP_010063692.1), and Kalopanax septemlobus (ALQ23119.1).
with the sequence GT and ended with AG, conforming to the GT/AG rules. Although the three genes contained multiple introns, no alternative splicing phenomenon was found in different organs and different flower development stages (Fig. S1).

3.3. Phylogenetic analysis of OfSQS, OfSQE, and OfBETA-AS

The BLAST tool was used to compare the obtained sequences with known sequences in the GenBank database. The results of the BLASTp analysis of the three amino acid sequences demonstrated that the proteins shared high similarity with those of other plants. For OfSQS, the protein sequence similarity with those of other plants was higher than 85%, such as 90% with Sesamum indicum, 89% with Bacopa monnieri, and 86% with Camellia oleifera, Salvia miltiorrhiza, and Euphorbia tirucalli. For OfSQE, the sequence similarity to those of other plants was 87% with Ziziphus jujuba, 86% with Cucumis melo, Cajanus cajan and Prunus mume, and 85% with Cucumis sativus and Morus alba. For OfBETA-AS, the sequence similarity was 99% with O. europaea, 91% with S. indicum, and 88% with Dorcorcas hygrometricum.

Cluster analysis of OfSQS with 20 SQS proteins from other plants showed that OfSQS was closest to the SQS of S. indicum and B. monnieri, and was also quite distant from SQS1 and SQS2 of Arabidopsis thaliana (Fig. 3a). For OfSQE, phylogenetic analysis of the deduced amino acid sequences revealed a closer evolutionary relationship with SiSQE and AtSQE1 (Fig. 3b). Moreover, OfBETA-AS shared the closest relationship with O. europaea (Fig. 3c).

3.4. Expression analysis in different organs

To clarify the tissue-specific expression patterns of OfSQS, OfSQE, and OfBETA-AS genes in the two cultivars of O. fragrans, i.e., “Boye” and “Rixiang,” qRT-PCR experiment was performed with different organs including roots, stems, leaves, and flowers (Fig. 4). The tissue-specific expression patterns of OfSQS, OfSQE, and OfBETA-AS among the examined tissues were predominant in the flowers and then in the leaves and stems, while the roots had the lowest expression level. The OfSQS transcript level in the opening flower was 8-fold higher than that in the “Rixiang” root, while it was only 2.4-fold higher in “Boye.” In “Rixiang” and “Boye,” the transcript levels of OfSQE in the opening

![Fig. 4. Expression patterns of (a) OfSQS, (b) OfSQE, and (c) OfBETA-AS genes in four different organs of O. fragrans. R: root, S: stem, L: Leaf, and OF: opening flower. Data were presented as mean values with error bars indicating standard error. Different letters denote significant differences at the 0.01 level according to Tukey’s test.](image-url)
flowers were 328-fold and 346-fold higher than in the root, respectively. For the OfBETA-AS gene, the transcript level of “Rixiang” and “Boye” in the opening flower was 397-fold and 303-fold higher than that in the root, respectively.

3.5. Expression analysis during flower development

To analyze the expression patterns of OfSQS, OfSQE, and OfBETA-AS genes during flower development, qRT-PCR was performed at the five flowering stages: bud-pedicel stage (S1), bud-eye stage (S2), primary blooming stage (S3), full blooming stage (S4), and flower fading stage (S5) (Fig. 5). In “Rixiang,” the expression level of the OfSQS gene did not show a significant change at the five stages, and the transcript level of OfSQE remained stable from S1 to S3 and then declined from S3 to S5. For OfBETA-AS, the expression level showed a regular downregulated trend at the five flowering stages. However, OfSQS, OfSQE, and OfBETA-AS showed the same expression trend in “Boye,” which increased from S1 to S2 and decreased from S3 to S5.

3.6. Subcellular localization

To confirm the subcellular localization of the OBETA-AS protein, the 35S::GFP-OBETA-AS vector was constructed and infiltrated into the tobacco leaves. A significant fluorescence signal was detected in the cell nucleus and cell membrane (Fig. 6), which indicated that OBETA-AS was a nucleus and membrane localized gene.

4. Discussion

Triterpenes are natural compounds that are mainly extracted from higher plants [18]. Genes involved in the biosynthesis of triterpenes have been identified and studied in numerous plants, including A. thaliana [19], P. ginseng [21], Glycyrrhiza uralensis [21], and Rhus verniciflua stenocarpa [22]. However, little research on this topic has been performed on sweet osmanthus.

Analysis of amino acid sequence alignment revealed that among the 6 conserved domains of OfSQS, domains III, IV, and V were more conservative [23]. Moreover, a large amount of aspartic acid (DXXDD) was present in domain II and IV, which would influence the combination of FPP and Mg2+ [20,24]. Domain V was the binding domain of NADPH that controlled the transition to squalene [24]. Domain VI was considered as the anchoring signal of the biological membrane [23]. The amino acid sequence (135–165) of OfSQE was indicated to be the putative flavin adenine dinucleotide (FAD) binding domains, which played an important role in the biosynthesis of triterpenoids [25,26]. Sequence analysis revealed that OBETA-AS contained four QW motifs, the DCTAE motif, and the MWCYCR motif among the highly conserved regions, and it was reported that the QW and DCTAE motifs were present in all β-amyrin synthase and OSC superfamily [14,28]. The DCTAE motif could protonate the squalene epoxide ring, and it was thought to be responsible for initiating the cyclization reaction. The MWCYCR motif is related to the specific formation of β-amyrin [27].

Homology analysis showed that the deduced protein sequences shared high similarity with proteins of other plants. OfSQS, OfSQE, and OBETA-AS showed 91%, 86%, and 91% identity with known proteins from S. indicum, respectively. This suggests a relationship of evolutionary conservatism between O. fragrans and S. indicum, both of which belong to Tubiflorae. Moreover, O. fragrans showed the highest similarity of 99% with O. europaea, which also belongs to the Oleana family, and the functional expression of ObSQS (Ocimum basilicum) led to the production of β-amyrin [28,29].

Analysis of the three genes revealed that the length and position of introns/exons in OfSQS and OBETA-AS were consistent with previous reports of AtSQS1 and VvBETA-AS (Vitis vinifera), respectively [30,31]. However, there were seven introns in AtSQS6 [32]. The intron numbers varied depending on the species. No alternative splicing phenomenon was identified in different organs during flower developments, indicating that the functions of these three genes were stable.

Triterpenoids are the downstream products of the MVA and MEP pathways. Uregulation of SQS can significantly improve the expression level of SQE and BETA-AS, suggesting that SQS plays a pivotal role in regulating the biosynthesis of triterpenoids [33]. Highest expression levels of SQS were reported in the vegetative organs of Withania somnifera and Stevia rebaudiana [34,35]. In addition, some similar observations found higher SQS expression in the roots of other plants, such as P. ginseng and Medicago truncatula [10,18,20]. However, the transcriptome results of this study showed that OfSQS was constitutively expressed in the root, stem, leaf, and flower tissues, with the highest expression in the flowers in both “Rixiang” and “Boye”; this finding was different from the results obtained for Aralia elata flowers that showed lower level of expression [36]. Therefore, the high expression might lead to the accumulation of specific triterpenoids in flowers of O. fragrans.
It was reported that the content of essential oil of *O. fragrans* was the highest at the initial flowering stage [7]. The three genes shared the same expression patterns in “Boye,” showing considerable variations with a clear peak in the S2 stage, suggesting that the three genes were involved in the synthesis of essential oil in sweet osmanthus. Previous studies showed that the aroma of “Boye” was stronger than that of “Rixiang,” and in this study, the expression level of the three genes was higher in “Boye” than in “Rixiang.” This indicates that further study of the relationship between these genes and the fragrance of sweet osmanthus is needed. Furthermore, the expression level of *OfSQS* showed no significant difference among the five stages; this result was consistent with that obtained in *W. somnifera* [34]. However, *OfSQE* and *OfBETA-AS* showed a typical trend of change at the five stages. Thus, *OfSQE* and *OfBETA-AS* might play an important role in the formation of triterpenes in sweet osmanthus. In addition, the role of *OfBETA-AS* in the formation of triterpenes is more critical because the difference in the expression level of *OfSQE* at stage S1 was not significant in “Boye” and “Rixiang,” while *OfBETA-AS* showed significantly different patterns during the five stages. The *OfBETA-AS*: GFP fusion protein was detected in the nucleus and membrane, which accorded with the localization characteristics of structural proteins.

5. Conclusions

In this study, three triterpenoid pathway genes, *OfSQS*, *OfSQE*, and *OfBETA-AS*, from *O. fragrans* were cloned, and the structure of the exons/introns of the three genes was further analyzed. Phylogenetic analysis revealed an evolutionarily conserved relationship between genes of *O. fragrans* and other plants. The functions of the three genes were stable, and no alternative splicing phenomenon was found. The qRT-PCR results showed that the *OfSQS*, *OfSQE*, and *OfBETA-AS* genes had a clear flower-specific expression pattern, supporting the hypothesis that the high expression might result in the specific accumulation of triterpenes in the flower of *O. fragrans*. The expression level of the *OfSQS* gene did not show a significant change at the five flowering stages. However, significantly different expression patterns of the *OfSQE* gene in cultivars “Boye” and “Rixiang” was detected from S2 to S5 stages. In addition, the expression patterns of the *OfBETA-AS* gene in cultivars “Boye” and “Rixiang” were significantly different during the whole flowering stages, thus showing that the *OfBETA-AS* gene had an important influence on the production and accumulation of triterpenoids in two *Osmanthus* cultivars from the very beginning. Therefore, *OfBETA-AS* might play a more critical role in the synthesis of triterpenoids. Functional research on the genes will be conducted in our following work.

Supplementary material

https://doi.org/10.1016/j.ejbt.2018.08.007

Conflict of interest

The authors declared that there no conflicts of interest concerning the publication of this paper.

Acknowledgments

This work was funded by the Application Demonstration of the Key Technology and Innovation in Breeding the Six Precious Colored Tree Species of Jiangsu Province (No. BE2017375), the top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP, PPZY2015A063), and the Innovative Plan of Academic Degree Graduate Students in Jiangsu Province.

References

