Research article

Type C feruloyl esterase from *Aspergillus ochraceus*: A butanol specific biocatalyst for the synthesis of hydroxycinnamates in a ternary solvent system

Evelyn Romero-Borbón, Daniel Grajales-Hernández, Mariana Armendáriz-Ruiz, Lorena Ramírez-Velasco, Jorge Alberto Rodríguez-González, Luis Alberto Cira-Chávez, María Isabel Estrada-Alvarado, Juan Carlos Mateos-Díaz

A R T I C L E I N F O

Article history:
Received 12 February 2018
Accepted 27 June 2018
Available online 03 July 2018

Keywords:
Aspergillus ochraceus
Biocatalyst
Butanol specificity
Butanol
Butyl caffeate
Butyl hydroxycinnamates
Hydroxycinnamic acids
Hydroxycinnamoyl esterase
Solid state fermentation
Strain producer
Type C feruloyl esterase

A B S T R A C T

Background: *Aspergillus ochraceus* was isolated from coffee pulp and selected as an interesting hydroxycinnamoyl esterase strain producer, using an activity microplate high-throughput screening method. In this work, we purified and characterized a new type C. *ochraceus* feruloyl esterase (*AocFaeC*), which synthesized specifically butyl hydroxycinnamates in a ternary solvent system.

Results: *AocFaeC* was produced by solid state fermentation, reaching its maximal activity (1.1 U/g) after 48 h of culture. After purification, the monomeric protein (34 kDa) showed a specific activity of 57.9 U/mg towards methyl ferulate. *AocFaeC* biochemical characterization confirmed its identity as a type C feruloyl esterase and suggested the presence of a catalytic serine in the active site. Its maximum hydrolytic activity was achieved at 40°C and pH 6.5 and increased by 109 and 77% with Ca²⁺ and Mg²⁺, but decreased by 90 and 45% with Hg²⁺ and Cu²⁺, respectively. The initial butyl ferulate synthesis rate increased from 0.8 to 23.7 nmol/min after transesterification condition improvement, using an isooctane:butanol:water ternary solvent system, surprisingly the synthesis activity using other alcohols was negligible. At these conditions, the synthesis specific activities for butyl *p*-coumarate, sinapinate, ferulate, and caffeate were 87.3, 97.6, 168.2, and 234 U/μmol, respectively. Remarkably, *AocFaeC* showed 5 folds higher butyl caffeate synthesis rate compared to type B *Aspergillus niger* feruloyl esterase, a well-known enzyme for its elevated activity towards caffeic acid esters.

Conclusions: Type C feruloyl esterase from *A. ochraceus* is a butanol specific biocatalyst for the synthesis of hydroxycinnamates in a ternary solvent system.

© 2018 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Feruloyl esterases (Faes; EC 3.1.1.73) are a group of hydrolases broadly distributed in plants and microorganisms that catalyze the hydrolysis or condensation between hydroxycinnamic acids (*p*-coumaric, caffeic, ferulic, and sinapinic acid) and an alcohol moiety. Their substrate specificity against four methyl hydroxycinnamates and their primary sequence identity allows the Faes to be classified into four types (A-D) [1]. Type A Faes show a preference for methyl ferulate and sinapinate, type B Faes for methyl *p*-coumarate and caffeate, while type C and D Faes have a broad specificity, hydrolyzing all methyl hydroxycinnamates.

Nowadays, Faes from several fungi of the *Aspergillus* genus are produced by solid state fermentation (SSF) with several advantages, such as a high volumetric productivity. Furthermore, many agro-industrial by-products containing hydroxycinnamic acids, may be used as supports/substrates for the induction of Fae activity [2,3]. For example, wheat bran and sugar beet pulp are inducers for type A (*AnFaeA*) and type B (*AnFaeB*) feruloyl esterases from *Aspergillus niger*, respectively [4,5], while maize bran induces a type C feruloyl esterase from *Aspergillus terreus* [6].
Faes have considerable roles in biotechnological processes in a wide variety of applications such as in biofuel, food, feed, pulp, paper, cosmetics, and pharmaceutical industries [7,8]. They have the ability to release ferulic acid and other hydroxycinnamic acids from plant biomass, which have been demonstrated to possess antioxidant, anti-inflammatory, antitumor, antimicrobial and photoprotective activities [9] and are precursors of high economic value molecules [10,11,12]. In addition, when the acidic moiety of a hydroxycinnamic acid is esterified with an alcohol (aliphatic or sugar), its biological activities might be enhanced or modified. Furthermore, the hydrophilic-lipophilic balance modification of hydroxycinnamic acids after esterification may also allow its incorporation into water or oil based formulations, which could be of interest in the cosmetic, food, agro-, and pharmaceutical industries [9].

During the last 15 years, several research works demonstrated that alkyl hydroxycinnamates biological activities show a cut-off effect between C4 and C8 alkyl chain length [13,14,15]. In this respect, butyl and octyl esters of p-coumaric and caffeic acid, showed the highest in vitro and in vivo anti-inflammatory activity through NF-κB pathway inhibition, suppressing the secretion of PGE2 [16]. Moreover, short, short and medium alkyl caffeate esters (<C5) showed enhanced antitumoral activities against cervical and gastric cancer cells in comparison with the non-esterified acids [17], while the butyl ester of sinapinic acid is reported as a potent antioxidant inhibiting lipid oxidation [18]. Additionally, butyl esters of coumaric acid showed the highest antifungal activity against Pyricularia oryzae, Valsa mali or Botrytis cinerea [19]. Finally, it has been demonstrated that butyl ferulate is an important precursor of a novel produg, used as a lipophilic antioxidant [20]. All these previous works prove the biological importance of butyl hydroxycinnamates and the need of alkyl specific enzymes for their synthesis.

The derivatization of hydroxycinnamic acids with an alkyl alcohol has been performed by esterification or transesterification using Faes in a ternary solvent system [21,22,23,24]. This system contains a non-polar solvent, an alcohol (aliphatic or sugar), and an aqueous phase. A ternary solvent system [21,22,23,24]. This system contains a non-polar solvent, an alcohol (aliphatic or sugar), and an aqueous phase. The spore suspension was added to achieve 3 × 10^7 spores per gram of maize bran. Maize bran was kindly provided by Minsa® (Los Mochis, Sinaloa, Mexico). A. niger strains for type A and type B feruloyl esterase production were kindly donated by Dr. Record and Dr. Levasseur from INRA, France.

2.2. Fungal strain conservation and inoculum preparation

A. niger and A. ochraceus spores were maintained in 50% v/v glycerol at −80°C. The spore suspension used as inoculum was prepared in 250 ml Erlenmeyer flasks each containing 50 ml of the media reported by Record et al. [30] and Rodriguez et al. [31] for A. niger and A. ochraceus, respectively. For A. ochraceus, washed maize bran with a particle size of approximately 0.15 mm (40 g/l) was used as an inducer. Flasks were incubated for 4 d at 30°C, and spores were collected by stirring 50 ml of 0.01% w/v Tween 80 sterile solution.

2.3. Feruloyl esterase production in SSF

SSF was performed essentially as described by Rodríguez et al. [31]. Prior to fermentation, maize bran (substrate) was washed thoroughly with tap water to eliminate the soluble sugars. Then, it was dried at 30°C for 3 d and finally milled and sieved to achieve a particle size of approximately 0.42 to 0.59 mm. Polyurethane foam was cut into 0.5 cm cubes and employed as a support for the SSF. The impregnation media composition (g/l) was as follows: MgSO4 (1); K2HPO4 (5); and urea (4). The support and substrate were mixed in a 1/3 (w/w) proportion, and then, each gram of mixture was added with 1.5-fold concentrated impregnation media at a pH of 6.5 and sterilized at 121°C for 15 min. The spore suspension was added to achieve 3 × 10^7 spores per gram of dry matter (gdm). The humidity and temperature were adjusted to 75% w/w and 30°C, respectively. After culture, the solid ferment of each column was placed in a plastic bag. The enzymatic extract was obtained after mixing the solid ferment with 2.5 mM MOPS at a pH of 7.2 in a 1/2 (w/v) proportion and applying slight manual pressure to each bag. The enzymatic extract was centrifuged at 14,000 × g for 5 min to eliminate fungal residues and suspended matter. Two fermentation columns were removed every 24 h to measure the Fae hydrolytic activity in the enzymatic extracts using methyl ferulate (MF) as the substrate and the spectrophotometric assay described below. Average values and standard deviation were reported.

2.4. Synthesis of methyl and butyl hydroxycinnamates

Each hydroxycinnamic acid was dissolved in methanol or butanol to obtain a 0.5 M solution, and then, 4% (v/v) HCl was added. The reaction mixture was heated under reflux for 18 h. The reaction progress was followed by thin layer chromatography (n-hexane/ethyl acetate; 2/1) and after complete reaction, the solvent was evaporated under reduced pressure using a rotary evaporator. The obtained powder was purified by silica gel column chromatography using different petroleum ether/diethyl ether mixtures. Fractions with the corresponding ester were pooled and dried to obtain white crystals with a purity of >98%.

2.5. Feruloyl esterase hydrolytic activity assays

2.5.1. Spectrophotometric assay

The Fae activity was determined by measuring the hydrolysis of different methyl hydroxycinnamates (5 mM) in the presence of the pH indicator 4-nitrophenol (0.5 mM), as described by Ramirez et al. [28]. The substrate solution was prepared using tert-butanol and 2.5 mM MOPS at a pH of 7.2 in a 1/9 (v/v) proportion. The decrease in
absorbance at 410 nm was continuously monitored in a microplate reader X-Mark from BioRad (Ciudad de Mexico, Mexico) at 30°C and a pH of 7.2 over 15 min. The reaction rate was calculated using the extinction coefficient obtained from standard curves (0 to 1 mM) for each hydroxycinnamic acid. Blank experiments were carried out using 2.5 mM MOPS buffer at a pH of 7.2. One unit corresponds to 1 μmol of hydroxycinnamic acid released per minute.

2.5.2. Chromatographic assay

The Fae activity was also measured by quantifying the hydroxycinnamic acid released after 30 min of enzymatic hydrolysis of the corresponding ester in 50 mM potassium phosphate buffer at a pH of 7 and 30°C. Reaction products were monitored at 310 nm in a Varian HPLC System (California, USA) with a ZORBAX Eclipse XDB-C18 column (4.6 mm, 3 × 250 mm, Agilent) at 30°C using water with 1% (v/v) formic acid and acetonitrile (60/40, v/v) as the mobile phase. The reaction rate was calculated using the extinction coefficient of each hydroxycinnamic acid, which was obtained from standard curves (0 to 5 mM). Blank experiments were carried out using 50 mM potassium phosphate buffer at a pH of 7. HPLC grade solvents were used during analysis. One unit corresponds to 1 μmol of hydroxycinnamic acid released per minute.

2.6. Feruloyl esterase purification

Ammonium sulfate (2 M) was added to the enzymatic extract, which was filtered through a 0.45 μm cellulose membrane (Millipore) and then loaded into a HiPrep Phenyl Sepharose FF 16/10 (Phenyl 5) column from GE (Little Chalfont, United Kingdom) pre-equilibrated with 2.5 mM MOPS at a pH of 7.2 (buffer A) containing 2 M ammonium sulfate. The column was washed with 10 column volumes (CVs) of the same buffer to remove any unbound proteins. The elution was performed in 20 CVs using a linear gradient of 2–0 M ammonium sulfate in buffer A at a flow rate of 1 ml/min. Active fractions were pooled and dialyzed overnight against buffer A. Afterwards, the pooled fractions were loaded into a DEAE 16/10 from GE (Little Chalfont, United Kingdom) pre-equilibrated with buffer A, and then, the column was washed with 10 CVs using the same buffer. The protein elution was performed in 10 CVs with a linear gradient of 0–0.5 M NaCl in buffer A at a flow rate of 1 ml/min. Active fractions were pooled and concentrated to 200 μl using an Amicon cellulose membrane from Millipore (10 kDa molecular mass cut-off) and loaded into a Superdex G200 16/60 from GE (Little Chalfont, United Kingdom) equilibrated with buffer A containing 150 mM NaCl. The elution was performed in 1.5 CVs, and active fractions were pooled and loaded onto a Mono Q 5/50 GL column from GE (Little Chalfont, United Kingdom) pre-equilibrated with buffer A. The purified protein was eluted in 10 CVs with a linear gradient of 0–0.5 M NaCl in buffer A at a flow rate of 1 ml/min. Recombinant type A and type B Fae from A. niger were produced and purified according to Record et al. [30] and Levasseur et al. [32], respectively.

2.7. Protein and electrophoresis assays

The protein concentration was determined using the Bradford microassay [33] and BSA as the reference protein. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) at 12% was performed to verify protein purity and to estimate the Fae molecular weight [34]. Zymography was carried out in 12% PAGE under non-denaturing conditions according to Camacho et al. [35] using MF as the substrate for the detection of the activity bands.

2.8. N-terminal amino acid sequence determination

The N-terminal sequence was determined by Edman degradation of an electroblotted pure deglycosylated protein sample (40 μg) obtained from a polyvinylidene difluoride membrane using a Trans-Blot Turbo Transfer Starter System from Bio-Rad (Ciudad de Mexico, Mexico). Analysis was carried out on a Microflex II instrument from Bruker (Massachusetts, USA).

2.9. Biochemical characterization of type C feruloyl esterase from A. ochraceus

2.9.1. Effects of the temperature and pH

The hydrolytic activity of the purified protein was evaluated at different temperatures (30 to 70°C) and pH values (4 to 10) using the chromatographic assay and MF as the substrate. For the pH assays, different solutions at 50 mM were used including the following: citrate buffer (pH = 4 to 5.5), sodium phosphate (pH = 6 to 7), Tris–HCl (pH = 7.5 to 8.5), and glycine-NaOH (pH = 9 to 10). Assay was performed by triplicate. Average values and standard deviation were reported.

2.9.2. Effects of metal ions and inhibitors

The effects of various metal ions (Ca2+, Mg2+, Mn2+, Zn2+, Cu2+, and Hg2+) and inhibitors (PMSF and β-mercaptoethanol) were evaluated by measuring the hydrolytic activity after 1 h of incubation using the chromatographic assay and MF as the substrate. The final concentration of all effectors was 1 mM. Assay was performed by triplicate. Average values and standard deviation were reported.

2.9.3. Kinetic parameters

The initial hydrolysis rates at different (0.01 to 4 mM) methyl caffeate (MC), methyl p-coumarate (MpC), MF, and methyl sinapinate (MS) concentrations were measured using the chromatographic assay. Afterwards, Km and Vmax were calculated using the Michaelis– Menten plot, Lineweaver–Burk regression plot and SigmaPlot 12.0 (Systat Software Inc.). For calculation of the Km, the molecular weight was estimated by SDS-PAGE. Assay was performed by triplicate.

2.10. Feruloyl esterase synthetic activity assays

2.10.1. Selection of the ternary solvent system for butyl ferulate synthesis

The synthesis of butyl ferulate was carried out by the transesterification of 50 mM MF in a ternary solvent system (isooctane: butanol: water) at 30°C, a pH of 7, and 1500 rpm in an Eppendorf Thermomixer®. The ternary solvent system was prepared according to Topakas et al. [21], with 1 ml being used in 1.5 ml sealed microtubes. To select butanol and water content in the ternary solvent system previously evaluated on the initial synthetic rate. The effect of enzyme concentration (1.3 to 20.7 mg/ml), BSA concentration (0 and 1 mg/ml), and initial aqueous pH (3 to 9) was evaluated after 30 min of reaction on the initial synthetic rate in the ternary solvent system previously selected. For the pH assays, different solutions at 50 mM were used including the following: citrate buffer (pH = 4 to 5), MES (pH = 6 to 6.5), MOPS (pH = 7), Tris–HCl (pH = 8), and glycine-NaOH (pH = 9). Reaction samples (20 μl) were taken at 0 as well as 30 min and stored at –20°C until HPLC analysis. Blank experiments were carried out without enzyme using the corresponding buffer. Assay was performed by triplicate. Average values and standard deviation were reported.

2.10.2. Synthesis of alkyl hydroxycinnamates

The transesterification of different methyl hydroxy-cinnamates (50 mM) with ethanol, propanol, butanol, octanol, and dodecanol was carried out in a ternary solvent system (isooctane: alcohol; water, 73:25:2, v/v/v) with 1 mg/ml BSA using 20 μl of the purified enzyme (0.52 mg/ml) dissolved in 50 mM Tris–HCl buffer at pH 8. Reaction were performed in a 1 ml volume at 30°C and 1500 rpm for 4 h. Reaction samples (20 μl) were removed at 0, 15, 30, 60, and 240 min, followed by storage at –20°C until HPLC analysis. Blank experiments were carried out using 50 mM Tris–HCl buffer at a pH of 8. Assay was
performed by triplicate. Average values and standard deviation were reported.

2.10.3. Determination of feruloyl esterase synthetic activity by HPLC

Synthesis reaction samples (20 μl) were diluted 10-fold with ethyl acetate and filtered through a 0.45 μm filter before HPLC analysis. The reaction products were monitored at 310 nm in a Varian HPLC System (California, USA) using a Luna® 5 μm silica (2) Phenomenex® column (100 Å, 150 × 4.6 mm, Agilent) at 30°C using n-hexane/ethyl acetate (80/20) as the mobile phase. The reaction rate was calculated using the extinction coefficient of each butyl hydroxycinnamate, which was obtained from standard curve (0 to 1 mM). One unit corresponds to 1 μmol of butyl hydroxycinnamate produced per minute. HPLC grade solvents were used during analysis. Assay was performed by triplicate. Average values and standard deviation were reported.

3. Results

3.1. Production and purification of type C feruloyl esterase from A. ochraceus (AocFaeC)

AocFaeC was produced by SSF using maize bran as an inducer (Fig. 1). Fae activity against MF was observed after 24 h, and the maximum activity of 1.1 U/gdm was reached around at 42 to 48 h of culture. Afterwards, the Fae activity decreased to 0.7 U/gdm after 120 h of fermentation. Thus, 200 g of solid ferment production was used to obtain the purifications and characterization assays. The culture was stopped after 48 h to avoid possible protein proteolysis.

AocFaeC was purified using a four-step chromatographic strategy from 1.31 l of enzymatic extract (Table 1). For the first chromatography step, a hydrophobic Phenyl S column was used. This step allows 58-fold enrichment of the protein and the recovery of 10% of the total initial activity. In the second chromatography step, a weak anion exchange DEAE column was employed and allowed the protein to be enriched 80-fold with a 71.4% yield. Then, a molecular exclusion step using a Superdex G200 column increased the purification factor by 295 with a 56.8% yield. Finally, a strong anion exchange Mono Q column led to the recovery of 0.23 mg of the pure protein (11.3% yield) with a purification factor of 483. The eluted protein was dialyzed overnight against 2.5 mM MOPS buffer at a pH of 7.2 to remove the residual NaCl. The homogeneity of the purified protein was verified by SDS-PAGE, Fig. 2a, showing a single band after purification. The specific activity of the pure AocFaeC was 57.9 U/mg using MF as a substrate (Table 1). The zymographic analysis through each purification step showed only one activity band when using MF as a substrate, Fig. 2b.

\[\text{Activity (U/gdm)} = \frac{\text{Specific activity} \times \text{Yield}}{\text{Specific activity of the crude extract}} \]

A. ochraceus (AocFaeC) was produced by SSF using maize bran as an inducer (Fig. 1). Fae activity against MF was observed after 24 h, and the maximum activity of 1.1 U/gdm was reached around at 42 to 48 h of culture. Afterwards, the Fae activity decreased to 0.7 U/gdm after 120 h of fermentation. Thus, 200 g of solid ferment production was used to obtain the purifications and characterization assays. The culture was stopped after 48 h to avoid possible protein proteolysis.

AocFaeC was purified using a four-step chromatographic strategy from 1.31 l of enzymatic extract (Table 1). For the first chromatography step, a hydrophobic Phenyl S column was used. This step allows 58-fold enrichment of the protein and the recovery of 10% of the total initial activity. In the second chromatography step, a weak anion exchange DEAE column was employed and allowed the protein to be enriched 80-fold with a 71.4% yield. Then, a molecular exclusion step using a Superdex G200 column increased the purification factor by 295 with a 56.8% yield. Finally, a strong anion exchange Mono Q column led to the recovery of 0.23 mg of the pure protein (11.3% yield) with a purification factor of 483. The eluted protein was dialyzed overnight against 2.5 mM MOPS buffer at a pH of 7.2 to remove the residual NaCl. The homogeneity of the purified protein was verified by SDS-PAGE, Fig. 2a, showing a single band after purification. The specific activity of the pure AocFaeC was 57.9 U/mg using MF as a substrate (Table 1). The zymographic analysis through each purification step showed only one activity band when using MF as a substrate, Fig. 2b.

3.2. Biochemical characterization of AocFaeC

The molecular mass of AocFaeC was estimated to be approximately 34.6 kDa by SDS-PAGE, Fig. 2a, and 26.5 kDa (data not shown) by exclusion chromatography using a Superdex G200 column. The kinetic constants (Km, Vmax, and kcat) were determined by measuring the initial hydrolysis rates of methyl hydroxycinnamates at different substrate concentrations (Table 2). The purified protein obeys Michaelis–Menten kinetics in the substrate concentration range of 0.01 to 4 mM. The Km constants for all methyl hydroxycinnamates tested are shown in Table 2; for MS (1.11), the constant was approximately 2-fold higher than for MC (0.53), MζC (0.58), and MF (0.64). The Vmax values against MC (40), MζC (47), MF (58) and MS (40) showed a broad hydrolytic capacity for A. ochraceus Fae. The substrate specificity was estimated by the specificity constant (kcat/Km). AocFaeC showed a slight preference for MF (31 356), MζC (28 037), and MC (26 113) with regards to MS (12 468). The AocFaeC N-terminal amino acid sequence is shown in Table 3. A BLAST analysis using the AocFaeC N-terminal sequence revealed more than 60% homology with other known N-terminal sequences of type C Faes from Aspergillus species and 100% homology with a putative type C Fae from A. niger (Table 3).

On the other hand, the activity of AocFaeC was measured as function of the temperature using MF as the substrate, Fig. 3a. AocFaeC showed a maximum activity at 40°C, and then it decreased sharply to 7% of the maximum activity at 60°C. The AocFaeC activation energy (Ea) was 24.9 kJ/mol, Fig. 3a. In the same way, the influence of the pH on the AocFaeC activity was measured in a pH range of 4 to 10, Fig. 3b. The maximum AocFaeC activity was observed at a pH of 6.5 using MF as a substrate, and surprisingly, the enzyme retained 40% of its maximum activity at a pH of 10.

The effects of various divalent metal ions and inhibitors on the AocFaeC hydrolytic activity using MF as the substrate are shown in Table 4. The AocFaeC activity increased with the addition of Ca2+ (209%), Mg2+ (117%), Mn2+ (143%), and Zn2+ (112%); was partially inhibited by β-mercaptoethanol (83%) and Cu2+ (55%); and a significant decrease in Fae activity was detected in the presence of Hg2+ (10%). Besides, the addition of PMSF resulted in a total loss of AocFaeC activity.

3.3. Effect of the ternary solvent system composition on the AocFaeC initial synthetic rate of butyl ferulate

The synthesis of butyl ferulate by the transesterification of MF with butanol was performed in an isooctane:butanol:water ternary system using AocFaeC at 30°C (Fig. 4). The effects of the butanol, Fig. 4a, and
water concentrations, Fig. 4b, as well as the pH in the aqueous phase, Fig. 4c, and enzyme concentration, Fig. 4d, were evaluated. The maximum initial synthetic rate of 2.8 nmol/min was reached at 73:25:2 as seen in Fig. 4a. A higher butanol concentration using an isooctane:butanol:water relation of 73:25:2 sharply decreased the initial synthetic rate to 1.2 nmol/min (Fig. 4a). A lower (isooctane:butanol:water, 74:25:1 relation) or higher (isooctane:butanol:water, 71:25:4 relation) water concentration, decreased the initial synthetic rates to 0.9 nmol/min and 1.3 nmol/min, respectively (Fig. 4b). Thus, further experiments were carried out at an isooctane:butanol:water relation of 73:25:2. Afterwards, the addition of 1 mg/ml BSA into the aqueous phase of the ternary system reaction was evaluated. The addition of BSA increased the initial synthetic rate by 2.8-fold to 7.8 nmol/min. Regarding the effect of the initial aqueous phase pH on the initial butyl ferulate synthetic rate, AocFaeC was not active at an aqueous phase pH of 4, although the initial synthetic rate increased to 9.3 nmol/min at an aqueous phase pH of 9. It is important to mention that butyl ferulate was not detected using the corresponding buffer without enzyme, showing that alkaline catalysis is not occurring under the reaction conditions. Further studies were assessed at an aqueous phase pH of 8 to avoid possible methyl hydroxyccinnamate degradation. Finally, the effect of the AocFaeC concentration on the initial synthetic rate was evaluated, Fig. 4d. The initial synthetic rate increased linearly to reach its maximum of 23.7 nmol/min using 10 μg of AocFaeC. A higher enzyme concentration (20 μg) did not increase the initial synthetic rate (23 nmol/min). Thus, further studies were performed using a ternary solvent composition of isooctane:butanol:water 73:25:2, an AocFaeC concentration of 10 μg, 1 mg/ml BSA and an initial aqueous phase pH of 8, which increased the initial transesterification synthetic rate for obtaining butyl ferulate up to 30-fold (from 0.8 nmol/min to 23.7 nmol/min).

Table 2

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(K_m) (mM)</th>
<th>(V_{max}) (μmol/min/mg)</th>
<th>(k_{cat}) (1/min)</th>
<th>(k_{cat}/K_m) (1/mM min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>0.53</td>
<td>40</td>
<td>13,840</td>
<td>26,113</td>
</tr>
<tr>
<td>MpC</td>
<td>0.58</td>
<td>47</td>
<td>16,262</td>
<td>28,037</td>
</tr>
<tr>
<td>MF</td>
<td>0.64</td>
<td>58</td>
<td>20,068</td>
<td>31,356</td>
</tr>
<tr>
<td>MS</td>
<td>1.11</td>
<td>40</td>
<td>13,840</td>
<td>12,468</td>
</tr>
</tbody>
</table>

* Kinetic parameters were determined using methyl caffeate (MC), methyl p-coumarate (MpC), methyl ferulate (MF), and methyl sinapinate (MS) as substrates and determined from Lineweaver–Burk plots.

3.4. Potential of AocFaeC for the synthesis of alkyl hydroxyccinnamates

The transesterification of methyl to alkyl ferulates in the ternary solvent system conditions previously selected were performed using pure preparations of AnFaeA, AnFaeB, and AocFaeC as biocatalysts, in order to evaluate its synthetic potential. The specific synthetic activity per μmol of pure enzyme for each Fae is shown in Fig. 5. The specific synthetic activities of AnFaeA for ethyl, propyl, butyl, octyl, and dodecyl ferulate were 19.0, 33.4, 20.5, 4.5, and 3.2 U/μmol of enzyme, respectively, showing a preference for the propyl chain. Aversely, AnFaeB shows low specific synthetic activity for all alkyl ferulate (around 2.9–5.4 U/μmol), without showing any alkyl synthesis preference. Interestingly, AocFaeC was able to synthesize only butyl and octyl ferulate with a specific synthetic activity of 168.2 and...
5.3 U/μmol, respectively. As the specific synthetic activity of AocFaeC using other alcohols during transesterification reaction was negligible, it might be considered as a butyl chain specific Fae.

Finally, the transesterification of methyl to butyl hydroxycinnamates using AnFaeA, AnFaeB, and AocFaeC were performed to evaluate the acyl substituent preference (Fig. 6). The specific synthetic activities of AnFaeA for butyl p-coumarate, ferulate and sinapinate transesterification were 4.1, 20.5, and 39.3 U/μmol, respectively, showing a preference for butyl sinapinate synthesis. The specific synthetic activities of AnFaeB for butyl ferulate, caffeate, and p-coumarate transesterification were 5.4, 47.7, and 80 U/μmol, respectively, showing a preference for the synthesis of hydroxylated hydroxycinnamates. Interestingly, the specific synthetic activities of AnFaeC for butyl p-coumarate, sinapinate, ferulate, and caffeate were 87.3, 97.6, 168.2, and 234 U/μmol, respectively, showing a preference for butyl caffeate. AocFaeC shows 2.5- and 5-fold higher synthetic activities than AnFaeA and AnFaeB for butyl p-coumarate, sinapinate, ferulate, and caffeate, respectively. These results demonstrate that at the conditions described in this work, AocFaeC was able to specific synthesize all butyl hydroxycinnamates tested, at higher rates than AnFaeA and AnFaeB.

4. Discussion

After the first purification step, 109% of the total initial activity was recovered probably due to the presence of an inhibitor in the crude extract. AocFaeC is a monomeric protein and a type C feruloyl esterase like Fae from Aspergillus oryzae (AoFaeC) [36], Talaromyces stipitatus (TsFaeC) [37], Myceliophthora thermophila (StFaeC) [38], and Fusarium oxysporum (FoFaeC) [39]. The molecular weight for AocFaeC estimated by SDS-PAGE (34.6 kDa) was between those of AtFae-2 (23 kDa) and AtFae-3 (36 kDa) from A. terreus [8] and between those of TsFaeC (23 kDa) [38], TsFaeC (55.3 kDa) [37], FoFaeC (62 kDa) [39], and AoFaeC (75 kDa) [40]. Thus, the type C feruloyl esterase group is composed of a wide range of molecular weight proteins and AocFaeC belongs to the medium molecular weight ones. The AocFaeC specific hydrolysis activity against MF (57.9 U/mg) was similar to the activity of TsFaeC (68.5 U/mg) [37] and significantly greater than that of StFaeC (0.7 U/mg) [25].

The comparison of kcat/Km values showed the broad specificity of AocFaeC against methyl hydroxycinnamates. Presently, the other reported fungi Fae that exhibit such a broad activity spectrum towards hydroxycinnamic esters are AtFae-2 [8], AtFae-3 [8], FoFae-1 [21], FoFaeC [39], TsFaeC [37], AoFaeC [40], and StFaeC [25]. Comparing different type C Fae, the AocFaeC specificity constant using MF as a substrate is 3- and 330-fold higher than those of AoFaeC [40] and StFaeC [25], respectively, but is half of that reported for FoFaeC [39]. Nonetheless when comparing AocFaeC with type A Fae, the specificity constant using MF as a substrate is 6- and 18-fold greater than those values reported by Faulds et al. [41] and Schär et al. [42] for AnFaeA, which is an enzyme evolutionarily adapted to hydrolyze hydroxycinnamic acid esters containing methoxy substituents in the phenolic ring [43]. Thus, the broad substrate specificity and the N-terminal amino acid sequence reveals that the Fae from A. ochraceus corresponds to a type C feruloyl esterase [3].

The maximum activity of AocFaeC was reached at 40°C, similar to AtFae-2 and AtFae-3 from A. terreus [8]. However, this temperature...
differs from those reported for other mesophilic fungi type C Fae such as *Fusarium oxysporum* (65°C) [39] and *Talaromyces stipitus* (60°C) [37]. On the other hand, the activation energy (E_a) of AocFaeC (24.9 kJ/mol) is similar to that of the type A Fae from *Aspergillus awamori* (21.4 kJ/mol) [44]. The effect of pH on AocFaeC hydrolytic activity towards MF reveals that the maximum activity was reached at a pH of 6.5, a value slightly higher than those reported for mesophilic fungi type C Fae, which reported pH values of 5 or 6 [8,37,39,40]. As shown in Fig. 3b, AocFaeC retains more than 60% of its maximum activity at pH values from 5.5 to 9.0, a property that might be exploited in alkaline processes.

In the effectors study, most metal ions tested increased the AocFaeC hydrolytic activity towards MF. The activation of AocFaeC hydrolytic activity by Ca²⁺ using MF as a substrate (209%) was higher than the activation of *Penicillium pinophilum* and *Talaromyces stipitus* (21.4 kJ/mol) [44]. The effect of pH on AocFaeC hydrolytic activity towards MF reveals that the maximum activity was reached at a pH of 6.5, a value slightly higher than those reported for mesophilic fungi type C Fae, which reported pH values of 5 or 6 [8,37,39,40]. Similar behaviors by Mg²⁺ and Mn²⁺ have been reported for the *Penicillium pinophilum* Fae [45] and a soil metagenomic library *Tan410 Fae* [46], respectively. The AocFaeC hydrolytic activity increased to 112% after incubation with Zn²⁺, unlike *Russula virescens* Fae, whose hydrolytic activity measured with MF was reduced to 98% [47]. Heavy metals such as Hg²⁺ and Cu²⁺ are thiol group and disulfide bond reducing agents [48], which inhibited AocFaeC activity by 90 and 45%, respectively. As AocFaeC maintains 83% of its activity after incubation with β-mercaptoethanol, a disulfide bond reducing agent [49], it can be suggested that thiol groups may play an important role in Fae activity. The complete loss of AocFaeC activity by PMSF reveals the presence of a serine in the active site [50].

In the transesterification of MF to butyl ferulate using the best ternary solvent system conditions found in this work (isooctane:butanol:water, 73:25:2 containing 1 mg/ml of BSA at a pH of 8 and 30°C).

Declarations of interest

None.

Acknowledgements

Evelyn Romero and Daniel Grajales acknowledge the scholarships received from Consejo Nacional de Ciencia y Tecnología. The authors acknowledged Dra. Régine Lebruns for determining the N-terminal amino acid sequence and Dr. Eric Record and Dr. Anthony Levassuer for the kind donation of *Aspergillus niger* transformants (CNRS, Marseille, France).

Financial support

This work was supported by the Fondo Mixto del Gobierno del Estado de Jalisco [project number 2012-07-190698].

