Degradation of keratin substrates by keratinolytic fungi

Mariana Călin a,b, Diana Constantinescu-Aruxandeia, Elvira Alexandrescu a, Iuliana Răut a, Mihaela Badea Doni a, Melania-Liliana Arsenea a, Florin Oancea a, Luiza Jecu a,⁎, Veronica Lazăr b

A R T I C L E I N F O

Article history:
Received 28 February 2017
Accepted 24 May 2017
Available online 30 May 2017

Keywords:
Biodegradation
FTIR
Fungal species
Fusarium
Keratin degradation
Keratinases
Keratinolytic fungi
SEM
TGA

A B S T R A C T

Background: The hydrolysis of keratin wastes by microorganisms is considered a biotechnological alternative for recycling and valorization through keratinolytic microorganisms. Despite their resistant structure, keratin wastes can be efficiently degraded by various microorganisms through the secretion of keratinases which are promising enzymes for several applications, including detergents, fertilizers, and leather and textile industry. In an attempt to isolate keratinolytic microorganisms that can reach commercial exploitation as keratinase producers, the current work assesses the dynamics of keratin biodegradation by several keratinolytic fungal strains isolated from soil. The activity of fungal strains to degrade keratin substrates was evaluated by SEM, FTIR-ATR spectra and TGA analysis.

Results: SEM observations offered relevant information on interactions between microorganism and structural elements of hair strands. FTIR spectra of the bands at 1035–1075 cm⁻¹ assigned to sulfoxide bond appeared because of S–S bond breaking, which demonstrated the initiation of keratin biodegradation. According to TGA, in the second zone of thermal denaturation, where keratin degradation occurs, the highest weight loss of 71.10% was obtained for sample incubated with Fusarium sp. 1A.

Conclusions: Among the tested strains, Fusarium sp. 1A was the most active organism in the degradation process with the strongest denaturation of polypeptide chains. Because keratinolytic microorganisms and their enzymes keratinases represent a subject of scientific and economic interest because of their capability to hydrolyze keratin, Fusarium sp. 1A was selected for further studies.

© 2017 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Keratin is an insoluble fibrous protein characterized by high stability due to the high degree of cross-linkages by disulfide and hydrogen bonds. It also contains a variety of amino acids, predominantly cysteine, lysine, proline, and serine. Considering the secondary structural conformation, keratins have been classified into α- (α-helix of hair and wool) and β-keratins (β-sheets of feather) [1,2]. In addition, keratins are grouped into hard keratin (hair, feather, nails, wool, etc.) having a high disulfide bond content and soft keratin (skin) with a low disulfide bond content. Keratin-rich wastes are troublesome environmental contaminants and are released in increasing quantities as byproducts from agro-industrial processes in the form of feathers, hair, nails, and horns. Fungi play an ecological role in the degradation of keratin substrates through their contribution to recycling the carbon, nitrogen, and sulfur from keratin.

Considering from both economic and environmental point of view, attention was focused on the management of recalcitrant keratinous wastes. The hydrolysis of keratin wastes by microorganisms is considered a biotechnological alternative for recycling and valorization through keratinolytic microorganisms. Keratinases, considered as proteases with keratinolytic function, act synergistically with other keratinolytic enzymes to degrade the complex supramolecular organization of keratin [3,4]. After disrupting the disulfide bonds of cysteine, the major amino acid in keratin, the keratin substrate is more easily available to the hydrolytic enzymes secreted by microorganisms.

Despite the resistant structure, keratin wastes can be efficiently degraded by various microorganisms that secrete of keratinolytic enzymes, such as keratinases, which are a group of serine or metalloproteases. These enzymes are predominantly extracellular and are produced by microorganisms growing in a basal medium containing keratinous substrates [5]. It is believed that in the future, microbial keratinases will occupy a special niche among proteases as valuable enzymes for the bioprocessing of the keratinous wastes, which are released into the environment in huge amounts because of human activities [6,7,8,9]. Because of their better performance
due to higher specificity and the keratinous waste biomass available, keratinases will replace proteases in the leather industry and detergents [10].

Many microorganisms grow naturally on keratinous materials. Among bacteria, keratin biodegradation has been demonstrated by Bacillus, particularly Bacillus licheniformis [11,12,13] and Bacillus subtilis [14,15,16], and Chryseobacterium [17,18,19]. Moreover, actinomycetes from the Streptomycetes genus are known to produce keratinases [20,21]. The most common active keratinolytic fungi belong to Aspergillus [22,23], Penicillium [24,25], Fusarium [26] Microsporum [27], Trichoderma [28], and Chrysosporium genera [29,30]. A relevant review on the microbiological deterioration of keratinous substrates was done by Blyskal [31], who listed and cataloged representative and predominant fungal genera and highlighted the most active ones.

In an attempt to isolate keratinolytic microorganisms that can reach commercial exploitation as keratinase producers, the current work assesses the dynamics of keratin biodegradation by several keratinophilic fungal strains isolated from soil. The ability of fungal strains to degrade horse hair keratin was evaluated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA).

2. Material and methods

2.1. Chemicals and reagents

Chemicals and reagents were purchased as follows: ZnSO₄·7H₂O from Merck, Germany; K₂HPO₄ from UCB, UK; CaCl₂ and FeSO₄·7H₂O from Reactivul, Romania.
2.2. Microorganisms

The experiments were conducted using the following keratinophilic fungal strains isolated from soil: *Trichophyton* sp., *Fusarium* sp. strain 1A, *Trichoderma* sp., *Cladosporium* sp., *Microsporum* sp., *Fusarium* sp., *Phytophthora* sp., and *Chrysosporium* sp. The strains belonged to Microbial Collection of INCDCP-ICECHIM and were maintained on potato dextrose agar (PDA) slants at 4°C.

2.3. Keratin substrate

Horse hair strands obtained from a local household were surface sterilized with ethanol (3%), washed thoroughly under running water, and then dried at 60°C. The hair strands were cut into pieces of about 2 cm in length, separated into portions of 50 mg weight, and autoclaved at 121°C for 20 min (Panasonic MLS-3751L).

2.4. Conditions of cultivation

To study the time course for microbial growth and substrate degradation, the selected microorganisms were cultured in 250-ml Erlenmeyer flasks containing 50 ml medium and 50 mg keratin substrates. The flasks were inoculated with a piece of mycelium from each strain. A basal solution with the following composition was used (g/l): 0.1, KH2PO4; 0.01, CaCl2; 0.1, FeSO4 7H2O; 0.005, ZnSO4 7H2O; pH = 7.5. The control contained only the basal mineral solution and keratin substrate, without any microorganism. All the flasks were incubated on a rotary shaker (Heidolph Unimax 1010) at 100 rpm and 27 ± 1°C for 21 d. The cultivation experiments were performed in triplicate. The fungal cultures were filtered through Whatman filter paper No. 1. The strand fragments were washed gently to remove fungal hyphae, dried at 60°C for 48 h, and analyzed by FTIR and TGA. The strand fragments with mycelium were analyzed by SEM.
2.5. Morphological analysis (SEM)

Morphological analysis of samples was carried out by SEM performed on a FEI-QUANTA 200 instrument in ICECHIM. The horse hair strand samples recovered from the culture medium of the biodegradation experiments were placed on metallic support, an aluminum standard stub, using a double-sided adhesive carbon tape. SEM images were obtained at an accelerating voltage of 20–30 kV and 133 Pa using a large field detector (LFD). Micrographs of the samples were investigated at different magnifications to identify changes after the degradation process. For each sample, 8–10 micrographs were performed and the relevant images were obtained.

2.6. FTIR spectra

FTIR was performed to evaluate the biodegradation extent. FTIR spectra were acquired using a FTIR Tensor 37 spectrometer (Bruker) with ATR Golden Gate in the ICECHIM laboratory. All spectra were recorded from 500 to 4000 cm\(^{-1}\).

2.7. Thermal stability

The thermal stability of the hair samples recovered from culture medium of biodegradation experiments was investigated by TGA using a TGA Q5000IR (TA instruments) in ICECHIM. Samples (50–10 mg) were heated from 20°C to 700°C at a 10°C/min scanning rate under nitrogen atmosphere (flow rate, approximately 200 mL min\(^{-1}\)). The onset temperature was determined as the temperature corresponding to the crossover of tangents drawn on both sides of the decomposition trace, and the residue was evaluated as the residual weight at 700°C.

3. Results and discussions

The experiments were conducted using keratinolytic fungal isolates from soil samples because of the accumulation of keratin wastes in the...
soils (geophilic). The fungal isolates were identified up to genus level on the basis of morphological characteristics (data not shown). Identification of species is currently in progress.

3.1. Morphological analysis (SEM)

The morphology of the strand samples was investigated by SEM, which offered detailed information on the interactions between microorganism and structural elements of the hair strand. The hair strand consists of three main morphological components: cuticle, cortex, and medulla. These layers are held together by the cell membrane complex. The cortex, which is responsible for the great tensile strength of the hair fiber, is made of microfibrils. Filaments are packed together and contain organized α-helical rods of keratin, which are embedded in an amorphous matrix. The cortex is covered with an external cuticle, which acts as a protective barrier against destruction. The medulla consists of specialized cells that contain air spaces [32].

The biodegradation of keratin by keratinolytic fungi occurs in a model with two basic forms of attack: surface erosion followed by radial penetration. The keratinolytic activity varied within species of the same genus and, in some cases, even within strains of the same species [33,34].

Hair samples after 21 d of incubation with fungal strains were analyzed by SEM, and the most representative micrographs of hair horse strand are presented in Fig. 1. Below each image, a detailed explanation on the elements of fungal growth and/or effects produced by fungi on horse hair strand structure is given.

Fig. 1.1 shows the initial samples of horse hair strands before (1.1a) and after the cleaning operation (ethanol sterilization, washing with water, and drying) (1.1b). Fig. 1.1 also shows the mycelium that strongly adhered to the hair strands (1.1c) and the extensive hyphal network around the hair that was partially detached from the strand (1.1d).

SEM images of Trichophyton sp. (Fig. 1.2) revealed many features: perforating tunnels perpendicular to strand axis (Fig. 1.2a), few fungal filaments detached from strand surface (Fig. 1.2b), strong cable hyphae...
(Fig. 1.2c) growing near a penetrating tunnel (Fig. 1.2d), a fungal filament covering the tunnel entrance, and the deterioration of hair strands exposing the cortex and constitutive elements such as macrofibrils (Fig. 1.2e). Because *Trichophyton* belongs to dermatophytes, the fungal strain produced the perforation of hair strands, showing structures such as tunnels, which are strong destructors of native keratins, therefore rapidly degrading the substrate.

Fusarium sp. strain 1A (Fig. 1.3) showed hyphae bundles growing around hair strands (Fig. 1.3a). This strain could destroy the integrity of hair strand, producing surface erosion as a “pocket” (Fig. 1.3b), a term explained by Marchisio et al. [33].

Trichoderma sp. (Fig. 1.4) produced mycelium either attached to hair strand surface or in certain areas as partially aerial mycelium (1.4a). In addition, there was observable damage produced to uniform surface after contact with the fungal strain (Fig. 1.4b).

SEM images showed that *Cladosporium* sp. produced dense mantel-like hyphae around the hair strand (Fig. 1.5a) and produced a hyphae network similar to a mantel strongly attached to the hair strand (Fig. 1.5b).

Fig. 1.6 presents representative micrographs showing the interactions between *Microsporum* sp. and keratin substrate: hyphae network attached as a mantel to hair strand or detached from strand surface (Fig. 1.6a), deterioration of hair strand by exposing the cortex and constitutive elements such as macrofibrils (Fig. 1.6b), degradative effect of fungal mycelium by forming an erosion pocket and the separation of macrofibrils bundles (Fig. 1.6c), and the beginning of cuticle degradation and evidence of macrofibril formation (Fig. 1.6d).

In SEM images of the sample incubated with *Fusarium* sp., lifting of cuticular scales can be observed, which is a prerequisite step in the degradation of hair strand (Fig. 1.7a). An unaffected part of the hair strand with intact cuticles (Fig. 1.7b) was observed. Near the deteriorated zone, lifting of cuticular scales was observed (Fig. 1.7c), which was produced by the hyphae growing around the hair strand (Fig. 1.7d).
Microscopic observations of the sample incubated with *Phytophthora* sp. showed the following: dense network of branching hyphae growing as a mantel surrounding the hair strand and growing hyphae detached from the strand (Fig. 1.8a); large surface erosion in pocket and a hypha pushing into the pocket, penetrating the strand matrix (Fig. 1.8b); a strong hypha penetrating below cortex, facilitating the lifting of cuticular scales (Fig. 1.8c and Fig. 1.8d).

In the sample incubated with *Chrysosporium* sp., surface erosion was observed as a pocket of 200 μm length, surrounded by eroding mycelia and a hypha crossing the pocket (Fig. 1.9a). Some filaments forming a network grew while attached around the hair strand, while others were detached from strand (Fig. 1.9b). In Fig. 1.9c along the hairline, it can be seen the different stages of hair degradation, from the intact structure of the hair strand to the digestion of cuticular scales and finally separation of macrofibrils. Fig. 1.9d shows macrofibril bundles surrounded by lax hypha network, exposed by the removing of strand cuticle after incubation with the fungal strain.

SEM images have shown that all the tested strains could develop adequate structures related to surface erosion and radial penetration. In our opinion, some SEM images reveal, for the first time, relevant aspects of hair strand degradation by certain strains, namely *Fusarium*, *Phytophthora*, and *Cladosporium*.

3.2. FTIR results

Infrared absorption spectra of horse hair strand after 21 d of incubation with fungal strains showed two large characteristic absorption bands, one assigned to the peptide bonds (–CONH–) and the other assigned to alkyl chain and OH bond (Fig. 2).

The bands positioned in the domain of 3300–3000 cm⁻¹ are assigned to the H-bonded OH stretch of water present in keratin, while those at around 3000–2700 cm⁻¹ are assigned to the stretching modes of the lipid alkyl chains (methyl and ethyl).

The fundamental structural units of the polypeptide chain of keratin are known as amide I, II, and III. The characteristic amide A band occurred at 3270–3280 cm⁻¹. Amide I is related to C–O stretching and occurs at 1700–1600 cm⁻¹. Amide II is related to N–H bending and C–H stretching vibration and falls in 1540–1520 cm⁻¹. Amide III is related to a combination of C–N stretching and C–O bending vibration and occurs in the range 1220–1300 cm⁻¹. For the initial horse hair sample, the amide I, II, and III bands were visible at 1632 cm⁻¹, 1531 cm⁻¹, and 1234 cm⁻¹, respectively, in accordance with those reported in other papers [35.36.37].

The peptide bonds from keratin remained unaffected during the fungal degradation, and their position did not change. Only a small migration to smaller values for amide I and II and to higher values for amide III was observed. For example, the values of amide I decreased from 1632.76 cm⁻¹ (control) to around 1631 cm⁻¹ (sample incubated with *Trichophyton* sp., *Cladosporium* sp., and *Chrysosporium* sp.), 1630 cm⁻¹ (*Microsporum* sp.), and 1629 cm⁻¹ (*Trichoderma* sp. and *Phytophthora* sp.). The same behavior was recorded for amide II: from 1531.17 cm⁻¹ (control) to around 1530 cm⁻¹ (*Microsporum* sp.), 1528 cm⁻¹ (*Chrysosporium* sp.), 1522 cm⁻¹ (*Fusarium* sp. strain 1A), 1520 cm⁻¹ (*Trichophyton* sp.), 1519 cm⁻¹ (*Trichoderma* sp. and *Phytophthora* sp.), and 1518 cm⁻¹ (*Cladosporium* sp. and *Microsporum* sp.). In the case of amide III, the peaks migrated to higher values: from 1234.95 cm⁻¹ (control) to around 1236 cm⁻¹ (*Trichophyton* sp., *Trichoderma* sp., *Microsporum* sp., *Fusarium* sp., *Phytophthora* sp., and *Chrysosporium* sp.) and 1237 cm⁻¹ (*Fusarium* sp. 1A).

During the biodegradation process, only the S–S bonds were affected by microorganisms, and after long contact, the microbial enzymes secreted disrupt the peptide bonds of the keratin chains. The bands assigned to sulfide bonds S–S occur in the range 600–620 cm⁻¹ (not very clear in the presented spectra). Signs of biodegradation initiation are the appearance of the bands at 1035–1075 cm⁻¹ assigned to sulfoxide bond (S=O) due to S–S bond breaking. The presence of the oxide forms of sulfur is important for the oxidation that occurs as monoxide-to-dioxide, then proceeding to full oxidation with the formation of cysteic acid.

The bands assigned to sulfoxide bonds are evident for all samples, with the highest peak areas obtained for sample incubated with *Fusarium* sp. strain 1A (Fig. 2c), *Microsporum* sp. (Fig. 2f), and *Chrysosporium* sp. (Fig. 2i). The band intensity decreased for samples incubated with *Cladosporium* sp. (Fig. 2e) and *Trichoderma* sp. (Fig. 2d). The peak areas of samples incubated with *Trichophyton* sp. (Fig. 2b), *Fusarium* sp. (Fig. 2g) and *Phytophthora* sp. (Fig. 2h) were approximately equal and much lower than the peak areas of other samples.

3.3. TGA results

TGA was performed to quantify the thermal degradation of keratin in a controlled atmosphere. Exposure to increasing temperature led to the breaking of disulfide bonds, which ensured a protective layer for fibrils. The ordered structure of keratin is affected and changed to a disorganized one. It is considered that because covalent S–S bonds have the highest energy of all the bonds in the interface, the cleavage represents the rate-determining step of keratin degradation [38].
Table 1 and the graphic representations summarized in Fig. 3 indicate the presence of three main zones of weight losses, similar to data reported in others papers [38,39].

The first zone (0–150°C) is due to water evaporation. The second one (150–500°C) corresponds to the denaturation of polypeptide chain in keratin, which resulted in major weight loss. In the temperature domain of 280–350°C, keratin suffers organic degradation of microfibrils and matrix. The third zone (500–700°C) represents the complete degradation of keratin and hair structure. The carbonized residue was obtained after heating at 700°C.

Results of TGA profiles showed some differences in the characteristic behavior of keratin substrates after incubation with different fungal strains. Even water evaporation occurred at different temperatures and migrated from 87.7°C in control, to smaller values in samples 2 (78.6°C), 3 (78.6°C), 6 (45.3°C), and 9 (42.6°C), or to higher values in samples 4 (92.7°C), 5 (90.7°C), 7 (83.7°C), and 8 (81.6°C). For all samples, excluding the sample incubated with Fusarium sp. strain 1A, the amount of water loss increased when compared with the control sample (7.38%), and the maximum was reached in the sample incubated with Chrysosporium sp. (8.02%).

In the second zone of thermal denaturation, the highest weight loss (71.10%) was obtained for the sample incubated with Fusarium sp. strain 1A, while the sample incubated with Chrysosporium sp. reached the lowest value.

In the temperature domain of 150–500°C, we identified two stages of thermal degradation in the control and samples incubated with Trichophyton, Trichoderma, and Cladosporium, while samples incubated with Fusarium sp. strain 1A, Microsporum, Fusarium, Phytophthora, and Chrysosporium exhibited three degradation stages. The peaks for samples with two stages were recorded at 237–242°C, with maxima around 297–303°C; these temperature values decreased for hair fibers after microbial incubation as compared

![Fig. 2. FTIR spectra of horse hair strand incubated with various keratinolytic fungal strains.](image-url)
with untreated sample. In the case of samples with three degradation stages, the third stage occurred around 319–324°C. Two degradation stages, between 220°C and about 450°C, with maxims at 250–290°C, and around 326°C, were also observed in the degradation of keratin from human hair. Several degradation compounds were identified: ammonia, CO2, sulfur-containing inorganic compounds (SCS, SCO, and H2S), water, thiols, nitriles, phenol, and 4-methylphenol compounds [40].

Table 1
Weight loss of keratins materials during exposure to increasing temperatures.

<table>
<thead>
<tr>
<th>Cod sample/TGA</th>
<th>Tested strain</th>
<th>Temperature domain (°C)/weight loss (%)</th>
<th>Residue (%)</th>
<th>Total weight loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control (keratin virgin)</td>
<td>7.38/65.31/4.86</td>
<td>22.46</td>
<td>77.55</td>
</tr>
<tr>
<td>2</td>
<td>Trichophyton sp.</td>
<td>7.60/66.50/4.61</td>
<td>21.22</td>
<td>78.71</td>
</tr>
<tr>
<td>3</td>
<td>Fusarium sp. strain IA</td>
<td>7.14/71.10/4.21</td>
<td>17.51</td>
<td>82.45</td>
</tr>
<tr>
<td>4</td>
<td>Trichoderma sp.</td>
<td>7.75/68.27/4.46</td>
<td>19.44</td>
<td>80.48</td>
</tr>
<tr>
<td>5</td>
<td>Cladosporium</td>
<td>7.63/68.06/4.35</td>
<td>19.92</td>
<td>80.04</td>
</tr>
<tr>
<td>6</td>
<td>Microsporum sp.</td>
<td>7.42/63.69/4.41</td>
<td>23.53</td>
<td>75.52</td>
</tr>
<tr>
<td>7</td>
<td>Fusarium sp.</td>
<td>7.46/66.61/5.01</td>
<td>20.85</td>
<td>79.15</td>
</tr>
<tr>
<td>8</td>
<td>Phytophthora sp.</td>
<td>7.36/65.51/6.95</td>
<td>19.35</td>
<td>80.62</td>
</tr>
<tr>
<td>9</td>
<td>Chrysosporium sp.</td>
<td>8.02/63.01/3.70</td>
<td>25.28</td>
<td>74.73</td>
</tr>
</tbody>
</table>

Fig. 2 (continued).
Different amounts of residue were obtained after heating the samples at 700°C. Because the maximum amount of keratin residue (25.28%) was obtained in culture with *Chrysosporium* sp., it can be concluded that this strain was less active in keratin degradation. *Fusarium* sp. strain 1A was the most active in the degradation process, producing the strongest denaturation of polypeptide chains from a substrate weakened by fungal contact. This feature was evidenced by the production of the lowest amount of residue (17.51%) after heating at 700°C.

4. Conclusions

The current work assesses the dynamics of keratin biodegradation by several keratinophilic fungal strains isolated from soil. The activity of fungal strains to degrade horse hair keratin was evaluated by SEM, FTIR spectra, and TGA analysis.

SEM micrographs offered detailed information on the interactions between microorganism and structural elements of hair strand. One may notice that all the tested strains could develop adequate structures related to keratin biodegradation, such as sleeve-like hyphae surrounding the strand, hyphae network and mycelia attached to the hair surface, and hyphae penetrating the cortex below cuticular scales. The initiation of keratin biodegradation was demonstrated by FTIR by the bands at 1035–1075 cm\(^{-1}\) assigned to sulfoxide bond, which appeared as a result of S–S bond breaking. The highest peak areas were recorded for samples incubated with *Fusarium* sp. strain 1A, *Microsporum* sp. and *Chrysosporium* sp.

The TGA indicated the presence of three main zones of weight losses in samples; this thermal behavior was similar to the data reported in other papers. The highest weight loss was achieved in the second zone of thermal denaturation, where keratin suffers organic degradation of microfibrils and matrix. It was 71.10% weight loss for sample incubated with *Fusarium* sp. strain 1A. *Fusarium* sp. strain 1A was the most active organism in the degradation process, producing the strongest denaturation of polypeptide chains from a substrate weakened by fungal contact. This feature was evidenced by the production of the lowest amount of residue (17.51%) after heating at 700°C.

Because keratinolytic microorganisms and their enzymes keratinases are a subject of scientific and economic interest because of...
their capability to hydrolyze keratin, *Fusarium* sp. 1A, which has potential in the biotechnological process of biodegrading keratin, was selected for further studies.

Financial support

This material is based upon work supported by the Ministry of National Education – Research Activity, in the frame of the projects PN 16.31.01.03 and PN 16.31.03.04, NUCLEU Programme 2016–2018.

Acknowledgments

Authors are thankful to Dr. Catalin Spataru for TGA analysis and Dr. Violeta Purcar for FTIR spectra.

References

