• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 7, No 1 (2004)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Isolation of adh mutant of Lactobacillus rhamnosus for production of L(+) Lactic acid | Narayanan | Electronic Journal of Biotechnology
doi: 10.2225/vol7-issue1-fulltext-7
Electronic Journal of Biotechnology, Vol 7, No 1 (2004)

Isolation of adh mutant of Lactobacillus rhamnosus for production of L(+) Lactic acid

Niju Narayanan, Pradip K. Roychoudhury, Aradhana Srivastava



Abstract

Lactobacillus rhamnosus, a facultative anaerobe, which produces L (+) lactic acid and ethanol under anaerobic conditions, is used in the present study. An adh- mutant of Lactobacillus rhamnosus MTCC 1408, was developed by chemical mutagenesis, which could produce pure L(+) lactic acid as the only product. Batch fermentation kinetics of the wild type and the mutant strain were studied in glucose-yeast extract medium under conditions of temperature 40ºC and pH 6.2 anaerobically. The biomass yield was similar in both wild type and mutant strains, however lactic acid yield increased by 6.6%. A chemically defined media was optimized for supplementation of succinate, acetate and citrate for better biomass formation using single variable optimisation. It was further optimised for varying concentrations of vitamins, amino acids and trace metals by response surface method. The batch biomass yield (0.1g/g) and lactic acid yield (0.88g/g) in the optimised chemically defined media were similar to those obtained in the glucose-yeast extract medium.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2022 by Electronic Journal of Biotechnology