• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 15, No 6 (2012)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Notify colleague*
  • Email the author*
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.

* Requires registration

Simultaneous environmental manipulations in semi-perfusion cultures of CHO cells producing rh-tPA | Vergara | Electronic Journal of Biotechnology
doi: 10.2225/vol15-issue6-fulltext-2
Electronic Journal of Biotechnology, Vol 15, No 6 (2012)

Simultaneous environmental manipulations in semi-perfusion cultures of CHO cells producing rh-tPA

Mauricio Vergara, Silvana Becerra, Alvaro Diaz-Barrera, Julio Berrios, Claudia Altamirano



Abstract

We evaluated the combined effect of decreasing the temperature to a mild hypothermia range (34 and 31ºC) and switching to a slowly metabolizable carbon source (glucose substituted by galactose) on the growth and production of a recombinant human tissue plasminogen activator (rh-tPA) by Chinese hamster ovary cells in batch and semi-perfusion cultures. In batch cultures using glucose as a carbon source, decreasing the temperature caused a reduction in cell growth and an increase in specific productivity of rh-tPA of 32% at 34ºC and 55% at 31ºC, compared to cultures at 37ºC. Similar behaviour was observed in cultures at 34ºC using galactose as a carbon source. Nonetheless, at 31ºC, the specific productivity of rh-tPA strongly decreased (about 58%) compared to the culture at 37ºC. In semi-perfusion culture, the highest rh-tPA specific productivity was obtained at 34ºC. Similarly, whether a decrease in the temperature is accompanied of the replacement of glucose by galactose, the rh-tPA specific productivity improved about 112% over that obtained in semi-perfusion culture carried out at 37ºC with glucose as the carbon source. A semi-perfusion culture strategy was implemented based on the combined effect of the chosen carbon source and low temperatures, which was a useful approach for enhance the specific productivity of the recombinant protein.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2018 by Electronic Journal of Biotechnology