• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 13, No 6 (2010)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.) | Yuan | Electronic Journal of Biotechnology
doi: 10.2225/vol13-issue6-fulltext-6
Electronic Journal of Biotechnology, Vol 13, No 6 (2010)

Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.)

Mei Yuan, Limin Gong, Ronghua Meng, Shuangling Li, Phat Dang, Baozhu Guo, Guohao He



Abstract

Cultivated peanut (Arachis hypogaea L.) is an oilseed crop of economic importance. It is native to South America, and it is grown extensively in the semi-arid tropics of Asia, Africa, and Latin America. Given an extremely narrow genetic base, efforts are being made to develop simple sequence repeat (SSR) markers to provide useful genetic and genomic tools for the peanut research community. A SSR-enriched library to isolate trinucleotide (GGC)n SSRs in peanut was constructed. A total of 143 unique sequences containing (GGC)n repeats were identified. One hundred thirty eight primer pairs were successfully designed at the flanking regions of SSRs. A suitable polymerase was chosen to amplify these GC-rich sequences. Although a low level of polymorphism was observed in cultivated peanut by these new developed SSRs, a high level of transferability to wild species would be beneficial to increasing the number of SSRs in wild species.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology