• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 13, No 1 (2010)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Inhibition of shrimp pathogenic vibrios by extracellular compounds from a proteolytic bacterium Pseudomonas sp. W3 | Rattanachuay | Electronic Journal of Biotechnology
doi: 10.2225/vol13-issue1-fulltext-2
Electronic Journal of Biotechnology, Vol 13, No 1 (2010)

Inhibition of shrimp pathogenic vibrios by extracellular compounds from a proteolytic bacterium Pseudomonas sp. W3

Pattamarat Rattanachuay, Duangporn Kantachote, Manee Tantirungkij, Teruhiko Nitoda, Hiroshi Kanzaki



Abstract

Pseudomonas sp. W3, a bacterium known to produce an extracellular alkaline protease, secreted secondary metabolites that inhibited pathogenic bacteria responsible for shrimp luminous vibriosis disease. Antivibrio compounds in the culture supernatant or culture filtrates (0.45 µm and 0.22 µm) of the isolate W3 were tested using an agar well diffusion method on a number of pathogenic vibrios. Vibrio harveyi PSU 2015 a pathogenic isolate was the most sensitive strain. The effectiveness of preparations from the isolate W3 against V. harveyi PSU 2015, and V. cholerae PSSCMI 0062 was in the order of culture supernatant > 0.45 µm culture filtrate > 0.22 µm culture filtrate. These extracellular antivibrio compounds also lysed both dead and living cells of V. harveyi PSU 2015. Results of the partial characterization tests indicated that there was some particulate antivibrio compound that was destroyed by treatment with enzymes particularly α-chymotrypsin, autoclaving at 121ºC for 15 min and was mostly removed by filtration through a 0.22 µm filter. Most of the inhibitory compounds were of small molecular weight able to pass through a 0.22 µm filter and were resistant to treatment with various enzymes, pH values between 4-8 and temperatures up to 121ºC for 30 min. The optimum pH for the antivibrio activity in the 0.45 µm culture filtrate was between pH 6-7.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology