• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 12, No 3 (2009)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Micro-scale surface-patterning influences biofilm formation | Kappell | Electronic Journal of Biotechnology
doi: 10.2225/vol12-issue3-fulltext-8
Electronic Journal of Biotechnology, Vol 12, No 3 (2009)

Micro-scale surface-patterning influences biofilm formation

Guimel M. Kappell, James P. Grover, Thomas H. Chrzanowski



Abstract

The formation of biofilms on indwelling/implanted medical devices is a common problem. One of the approaches used to prevent biofilm formation on medical devices is to inhibit bacterial attachment by modification of the synthetic polymers used to fabricate the device. In this work, we assessed how micro-scale features (patterns) imprinted onto the surface of silicone elastomer similar to that used for medical applications influenced biofilm formation by Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. Patterns were transferred from a multi-patterned oxidized silicon-wafer master-template to silicone elastomer. Features consisted of bars, squares, and circles each extending 0.51 µm above the surface. Feature sizes ranged between 1.78 and 22.25 µm. Distances separating features ranged between 0.26 and 17.35 µm. Bacterial biofilm formation on discs cut from imprinted silicone elastomer was assessed by direct microscopic observation and quantified as the surface area covered by biofilm. Unpatterned silicone elastomer served as a control. Several of the micro-scale patterns imprinted into the silicone elastomer significantly reduced biofilm formation by each bacterium and interrupted biofilm continuity. Although there were differences in detail among strains, bacteria tended to attach in the area between features more than to the surface of the feature itself.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology