• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 12, No 3 (2009)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Microbial succession in a fermenting of wild forest noni (Morinda coreia Ham) fruit plus molasses and its role in producing a liquid fertilizer | Kantachote | Electronic Journal of Biotechnology
doi: 10.2225/vol12-issue3-fulltext-12
Electronic Journal of Biotechnology, Vol 12, No 3 (2009)

Microbial succession in a fermenting of wild forest noni (Morinda coreia Ham) fruit plus molasses and its role in producing a liquid fertilizer

Duangporn Kantachote, Kanjana Kowpong, Wilawan Charernjiratrakul, Ashara Pengnoo



Abstract

The numbers of lactic acid bacteria (LAB) and yeasts that were present during a wild forest noni (Morinda coreia Ham) fermentation, the changes in its physico-chemical properties and levels of plant nutrients were investigated. LAB increased rapidly during the first 7 days and were the dominant population until after day 21 when the LAB were declining and the yeasts began to dominate. Identification of the LAB and yeasts to species level showed that the dominant LAB throughout was Lactobacillus plantarum while Lactobacillus pentosus was found but only at day 21. Saccharomyces cerevisiae was the most dominant species of yeast throughout but was slowly replaced by Pichia membranifaciens and then Pichia anomala. Rhodotolura mucilaginosa, an aerobic yeast, was only detected at the beginning of the fermentation process. It is suggested that the Pichia spp. were responsible for consuming lactic acid. After 56 days, the values of pH, acetic acid, ethanol and electrical conductivity in the fermented product were 3.66, 3.34 g L-1, 16.98 g L-1 and 14.47 mS cm-1, respectively. Increased amounts of plant nutrients were present at day 56 mostly derived from the degradation of plant material. At day 56 the amounts were as follows (in mg L-1): N 633, P 1210, K 4356, Ca 693, Mg 536, Mn 7, B 51, Zn 169, and total carbon/total nitrogen ratio (C/N ratio) 18. Based on the seed germination index (GI) of cherry tomato (Lycopersicon esculentum Mill), the extract diluted 256-fold gave the best GI of 157%.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology