• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 11, No 4 (2008)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Kinetic study on inducibility of polygalacturonases from Aspergillus flavipes FP-500 | Martínez-Trujillo | Electronic Journal of Biotechnology
doi: 10.2225/vol11-issue4-fulltext-6
Electronic Journal of Biotechnology, Vol 11, No 4 (2008)

Kinetic study on inducibility of polygalacturonases from Aspergillus flavipes FP-500

Aurora Martínez-Trujillo, Juan S. Aranda, Guillermo Aguilar-Osorio



Abstract

The aim of this work was to describe growth dynamics, substrate depletion and polygalacturonases production by Aspergillus flavipes FP-500 in batch cultures by means of unstructured models. The microorganism was cultivated on several mono- di- and poly- saccharides, and then the culture development modeled with Monod and Leudeking-Piret equations. The kinetic parameters related to the models (µmax, γx/s, α and β) were obtained by minimizing the quadratic residuals function with a simplex algorithm. An accurate description of experimental data was attained with the proposed models. Besides, modeling provided significant kinetic information on microbial degradation of complex substrates, such as the correlation between specific growth rate µmax and production yield α, suggesting that A. flavipes FP-500 polygalacturonases are actually constitutive, but also that there is a certain degree of induciblility in these enzymatic activities.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2022 by Electronic Journal of Biotechnology