• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 10, No 2 (2007)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Membrane damage of bacteria by silanols treatment | Kim | Electronic Journal of Biotechnology
doi: 10.2225/vol10-issue2-fulltext-7
Electronic Journal of Biotechnology, Vol 10, No 2 (2007)

Membrane damage of bacteria by silanols treatment

Yun-mi Kim, Samuel R. Farrah, Ronald H. Baney



Abstract

Antimicrobial action of silanols, a new class of antimicrobials, was investigated by transmission electron microscopy and fluorescent dye studies. Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa and Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis were treated by silanols at concentration of less than 0.2 wt% for one hour. Membrane damage of the bacteria by the silanol treatment was clearly observed by transmission electron microscopy. Separation of the cytoplasmic membrane from the outer membrane for E. coli and disorganized cytoplasmic membrane of the Gram-positive bacteria were observed when compared to the control. Fluorescent dyes, green-fluorescent nucleic acid stain (Syto 9) and the red-fluorescent nucleic acid stain (Propidium iodide), were used to monitor membrane damage of the bacteria by Confocal microscopy and Spectrophotometer. A reduction of the green fluorescent emission was detected for silanol treated bacteria indicating membrane damage of the bacteria and supporting the hypothesis that their viability loss may be due to their membrane damage analogus to alcohols.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology