• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 10, No 2 (2007)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Insect resistance and risk assessment studies of advanced generations of basmati rice expressing two genes of Bacillus thuringiensis | ur-Rahman | Electronic Journal of Biotechnology
doi: 10.2225/vol10-issue2-fulltext-3
Electronic Journal of Biotechnology, Vol 10, No 2 (2007)

Insect resistance and risk assessment studies of advanced generations of basmati rice expressing two genes of Bacillus thuringiensis

Mahmood ur-Rahman, Hamza Rashid, Ahmad Ali Shahid, Khurram Bashir, Tayyab Husnain, Sheikh Riazuddin



Abstract

Advanced generations of different transgenic lines of indica basmati rice (Basmati-370) expressing two unrelated Bt genes, cry1Ac and cry2A were evaluated for resistance to Yellow Stem Borer (YSB) and Rice Leaf Folder (RLF) under field conditions compared to control lines over three years (2003-2005). Homozygous lines were selected and analyzed for insect resistance, morphological, physiochemical properties and risk assessment studies. After artificial infestation of target insects, the transgenic plants showed significant resistance. Data were recorded in terms of dead hearts and white heads at vegetative and flowering stage respectively. Transgenic lines showed up to 100 and 96% resistance against yellow stem borer at vegetative and flowering stages, respectively. Natural damage of rice leaf folder was also observed during the year 2005. The transgenic plants were 98% more resistant as compared to untransformed control plants. Variations in some morphological characteristics, e.g., the average number of tillers, plant height and maturity were also observed. Transgenic lines produced 40% more grains than control plants. All these characteristics were stably inherited in advanced generations. The transgenic lines had no significant effect on non-target insects (insects belonging to orders other than Lepidoptera and Diptera) in field or under storage conditions. Chances of pollen-mediated gene flow were recorded at a rate of 0.14%.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology