• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 53 (2021)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
High arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring | Banerjee | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2021.05.006
Electronic Journal of Biotechnology, Vol 53 (2021)

High arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring

Aparna Banerjee, Shrabana Sarkar, Sourav Gorai, Ashutosh Kabiraj, Rajib Bandopadhyay



Abstract

Background: Arsenic contamination in the ground water of rural India is a recurrent problem and decontamination is mostly based on the chemical or physical treatments until now. Microbial bioremediation is eco-friendly, cheap, time-efficient and does not produce any toxic by-products.

Result: In the present study, a high arsenic tolerant bacteria Brevundimonas aurantiaca PFAB1 was isolated from Panifala hot spring located in West Bengal, India. Previously Panifala was also reported to be an arsenic-rich hot spring. B. aurantiaca PFAB1 exhibited both positive arsenic reductase and arsenite oxidase activity. It was tolerant to arsenite up to 90 mM and arsenate up to 310 mM. Electron microscopy has proved significant changes in cellular micromorphology and stalk appearance under the presence of arsenic in growth medium. Bioaccumulation of arsenic in As (III) treated cells were 0.01% of the total cell weight, while 0.43% in case of As (V) treatment.

Conclusions: All experimental lines of evidence prove the uptake/accumulation of arsenic within the bacterial cell. All these features will help in the exploitation of B. aurantiaca PFAB1 as a potent biological weapon to fight arsenic toxicity in the near future.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2022 by Electronic Journal of Biotechnology