• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 58 (2022)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya | Wu | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2022.05.005
Electronic Journal of Biotechnology, Vol 58 (2022)

Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya

Zhijiang Wu, Lifang Huang, Fengzhu Huang, Guifeng Lu, Shuotong Wei, Chaoan Liu, Haiyan Deng, Guidong Liang



Abstract

Background: Pitaya is an important economic fruit worldwide due to its numerous health benefits. A systematic understanding of the mechanism underlying flower development is essential to obtain higher fruit yield and quality. However, the genetic mechanism of flower development is not yet investigated in pitaya. Herein, a transcriptome analysis was performed to determine the transcriptional changes during flower development in red-flesh pitaya by utilizing nine different stages of flower development.

Result: A total of 95,412 unigenes were generated with a mean length of 913 nt, and N50 value of 1878 nt. Comparative transcriptomic analysis showed many differentially expressed genes (DEGs) among the flower growth stages. Furthermore, an array of key DEGs were enriched in hormone signaling, transcription, carbohydrate transport, and energy production pathways. In particular, indole-3-acetic acid, abscisic acid, ethylene-responsive transcription factor, constans-like, teosinte branched 1/cycloidea/proliferating cell nuclear antigen factor, apetala1-like, agamous-like MADS-box protein, sepallata, growth-regulating factor, putative axial regulator yabby, leafy/floricaula homolog, and MYB gene-associated transcription factors displayed altered expression, suggesting their critical roles in floral organ development of pitaya. Besides, genes related to sugar synthesis, transportation, and utilization mediate flower growth regulation in pitaya. Eleven genes were selected to perform qRT-PCR analysis to verify the results of the RNA sequencing.

Conclusions: Our results provide important insights into the transcriptional regulation of pitaya flower development. These data resources will be a cornerstone for future research that aims at exploring the genetic control of flower development in pitaya.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology