• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 58 (2022)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
A meta-analysis of low temperature tolerance QTL in maize | Yu | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2022.05.002
Electronic Journal of Biotechnology, Vol 58 (2022)

A meta-analysis of low temperature tolerance QTL in maize

Tao Yu, Jianguo Zhang, Jingsheng Cao, Shiliang Cao, Wenyue Li, Gengbin Yang



Abstract

Background: Cold injury is one of the most important limiting factors for maize production in mid-high latitude regions in the world. A total of 314 QTLs for maize low temperature tolerance have been identified in different populations using different statistical methods. However, few identical QTLs have been identified in different research studies.

Results: A consensus map of QTLs related to maize low temperature tolerance was constructed, based on the public genetic map, IBM2 2008 Neighbors as a reference map, along with a set of 314 QTLs reported in the literature over the past 20 years. A total of 187 QTLs were projected onto the IBM2 2008 Neighbors by software BioMercator. Forty-seven consensus QTLs were detected. The confidence interval at all sites ranged from 0.04 cM to 102.73 cM, and the proportion of the phenotypic variance associated with each of them ranged from 3.32% to 20.11%. Major chromosomal sites were identified on Chr.6 (MQTL29, MQTL30, and MQTL31).

Conclusions: This study provides further insights into the genetic basis of maize low temperature tolerance. Moreover, the MQTLs reported here could be harnessed for functional marker development and candidate gene mining of maize low temperature tolerance.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology