• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 51 (2021)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Statistical optimization of cellulases by Talaromyces thermophilus utilizing Saccharum spontaneum, a novel substrate | Abdullah | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2021.03.007
Electronic Journal of Biotechnology, Vol 51 (2021)

Statistical optimization of cellulases by Talaromyces thermophilus utilizing Saccharum spontaneum, a novel substrate

Roheena Abdullah, Maria Tahseen, Kinza Nisar, Afshan Kaleem, Mehwish Iqtedar, Faiza Saleem, Mahwish Aftab



Abstract

Background: At present, cellulases are the most important enzymes worldwide, and their demand has been increasing in the industrial sector owing to their notable hydrolysis capability.

Results: In the present study, contrary to conventional techniques, three physical parameters were statistically optimized for the production of cellulase by thermophilic fungi by using response surface methodology (RSM). Among all the tested thermophilic strains, the best cellulase producing fungus was identified as Talaromyces thermophilus – both morphologically and molecularly through 5.8S/ITS rDNA sequencing. The central composite design (CCD) was used to evaluate the interactive effect of the significant factors. The CCD was applied by considering incubation period, pH, and temperature as the model factors for the present investigation. A second-order quadratic model and response surface method revealed that the independent variables including pH 6, temperature 50 °C, and incubation period 72 h significantly influenced the production of cellulases. The analysis of variance (ANOVA) indicated that the established model was significant (P ≤ 0.05) and showed the high adequacy of the model. The actual and predicted values of CMCase and FPase activity showed good agreement with each other and also confirmed the validity of the designed model.

Conclusions: We believe the present findings to be the first report on cellulase production by exploiting Kans grass (Saccharum spontaneum) as a substrate through response surface methodology by using thermophilic fungus, Talaromyces thermophilus.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology