• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


DB Error: Can't connect to MySQL server on '158.251.8.152' (10060)

Metagenomics approach to identify lignocellulose-degrading enzymes in the gut microbiota of the Chinese bamboo rat cecum | Bai | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2020.12.001
Electronic Journal of Biotechnology, Vol 50 (2021)

Metagenomics approach to identify lignocellulose-degrading enzymes in the gut microbiota of the Chinese bamboo rat cecum

Ding-Ping Bai, Xin-Yu Lin, Yu-Qiong Hu, Zhen-Zhen Chen, Lu Chen, Yi-Fan Huang, Xiao-Hong Huang, Jian Li



Abstract

Background: Lignocellulose is considered a renewable organic material, but the industrial production of biofuel from lignocellulose is challenging because of the lack of highly active hydrolytic enzymes. The guts of herbivores contain many symbiotic microorganisms that have evolved to hydrolyze plant lignocellulose. Chinese bamboo rats mainly consume high-fiber foods, indicating that some members of the intestinal tract microbiota digest lignocellulose, providing these rats with the energy required for growth.

Results: Here, we used metagenomics to analyze the diversity and functions of the gut microbiota in Chinese bamboo rats. We identified abundant populations of lignocellulose-degrading bacteria, whose main functions involved carbohydrate, amino acid, and nucleic acid metabolism. We also found 587 carbohydrate-active enzyme genes belonging to different families, including 7 carbohydrate esterase families and 21 glycoside hydrolase families. The glycoside hydrolase 3, glycoside hydrolase 1, glycoside hydrolase 43, carbohydrate esterase 4, carbohydrate esterase 1, and carbohydrate esterase 3 families demonstrated outstanding performance.

Conclusions: The microbes and enzymes identified in our study expand the existing arsenal of proficient degraders and enzymes for lignocellulosic biofuel production. This study also describes a powerful approach for targeting gut microbes and enzymes in numerous industries.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology