• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 49 (2021)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Vibrio sp. ArtGut-C1, a polyhydroxybutyrate producer isolated from the gut of the aquaculture live diet Artemia (Crustacea) | Yévenes | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2020.10.003
Electronic Journal of Biotechnology, Vol 49 (2021)

Vibrio sp. ArtGut-C1, a polyhydroxybutyrate producer isolated from the gut of the aquaculture live diet Artemia (Crustacea)

Marco Yévenes, Mauricio Quiroz, Fumito Maruyama, Milko Jorquera, Gonzalo Gajardo



Abstract

Background: Vibrio species display variable and plastic fitness strategies to survive and interact with multiple hosts, including marine aquaculture species that are severely affected by pathogenic Vibrios. The culturable Vibrio sp. strain ArtGut-C1, the focus of this study, provides new evidence of such phenotypic plasticity as it accumulates polyhydroxybutyrate (PHB), a biodegradable polymer with anti-pathogen activity, particularly in the marine larviculture phase. The strain was isolated from the gut of laboratory-reared Artemia individuals, the live diet and PHB carrier used in larviculture. Its main phenotypic properties, taxonomic status and genomic properties are reported based on the whole-genome sequencing.

Results: Vibrio sp. ArtGut-C1 yielded 72.6% PHB of cells' dry weight at 25°C. The genomic average nucleotide identity (ANI) shows it is closely related to V. diabolicus (ANI: 88.6%). Its genome contains 5,236,997-bp with 44.8% GC content, 3,710 protein-coding sequences, 96 RNA, 9 PHB genes functionally related to PHB metabolic pathways, and several genes linked to competing and colonizing abilities.

Conclusions: This culturable PHB-accumulating Vibrio strain shows high genomic and phenotypic variability. It may be used as a natural pathogen biocontrol in the marine hatchery and as a potential cell factory for PHB production.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology