• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 41 (2019)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Assessment of wasteland derived biomass for bioethanol production | Smuga-Kogut | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2019.05.001
Electronic Journal of Biotechnology, Vol 41 (2019)

Assessment of wasteland derived biomass for bioethanol production

Małgorzat Smuga-Kogut, Tomasz Piskier, Bartosz Walendzik, Daria Szymanowska-Powałowska



Abstract

Background: The bioethanol produced from biomass is a promising alternative fuel. The lignocellulose from marginal areas or wasteland could be a promising raw material for bioethanol production because it is present in large quantities, is cheap, renewable and has favorable environmental properties. Despite these advantages, lignocellulosic biomass is much more difficult to process than cereal grains, due to the need for intensive pretreatment and relatively large amounts of cellulases for efficient hydrolysis. Therefore, there is a need to develop an efficient and cost-effective method for the degradation and fermentation of lignocellulosic biomass to ethanol.

Results: The usefulness of lignocellulosic biomass from wasteland for the production of bioethanol using pretreatment with the aid of ionic liquids of 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium chloride was evaluated in this study. The pretreatment process, enzymatic hydrolysis and alcoholic fermentation lasted a total of 10 d. The largest amounts of bioethanol were obtained from biomass originating from agricultural wasteland, in which the dominant plant was fireweed (Chamaenerion angustifolium) and from the field where the common broom (Cytisus scoparius) was the dominant.

Conclusions: The plants such as fireweed, common broom, hay and goldenrod may be useful for the production of liquid biofuels and it would be necessary in the further stage of research to establish and optimize the conditions for the technology of ethyl alcohol producing from these plant species. Enzymatic hydrolysis of biomass from agricultural wastelands results in a large increase in fermentable sugars, comparable to the enzymatic hydrolysis of rye, wheat, rice or maize straw.




Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology