• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 30 (2017)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Selection of Schizochytrium limacinum mutants based on butanol tolerance | Li | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2017.08.009
Electronic Journal of Biotechnology, Vol 30 (2017)

Selection of Schizochytrium limacinum mutants based on butanol tolerance

Demao Li, Ke Zhang, Limei Chen, Mengxun Ding, Minli Zhao, Shulin Chen



Abstract

Background: Mutation breeding is one of the most important routes to achieving high docosahexaenoic acid (DHA) productivity using Schizochytrium. However, few selection strategies have been reported that aim to generate a high DHA content in Schizochytrium lipids.

Results: First, culture temperature altered the butanol tolerance of Schizochytrium limacinum B4D1. Second, S. limacinum E8 was obtained by selecting mutants with high butanol tolerance. This mutant exhibited a 17.97% lower proportion of DHA than the parent strain S. limacinum B4D1. Third, a negative selection strategy was designed in which S. limacinum F6, a mutant with poor butanol tolerance, was obtained. The proportion of DHA in S. limacinum F6 was 11.22% higher than that of parent strain S. limacinum B4D1. Finally, the performances of S. limacinum B4D1, E8 and F6 were compared. These three strains had different fatty acid profiles, but there was no statistical difference in their biomasses and lipid yields.

Conclusion: It was feasible to identified the relative DHA content of S. limacinum mutants based on their butanol tolerance.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology